[1]高春彦,樊 荣,刘明洋,等.方钢管约束密实增强混凝土轴压短柱承载性能研究[J].西安建筑科技大学学报(自然科学版),2023,55(01):85-92.[doi:10.15986/j.1006-7930.2023.01.011 ]
 GAO Chunyan,FAN Rong,LIU Mingyang,et al.Performance study on bearing capacities of square steel tubular confined compact reinforced composite axial compression stub columns[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(01):85-92.[doi:10.15986/j.1006-7930.2023.01.011 ]
点击复制

方钢管约束密实增强混凝土轴压短柱承载性能研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
55
期数:
2023年01期
页码:
85-92
栏目:
出版日期:
2023-02-28

文章信息/Info

Title:
Performance study on bearing capacities of square steel tubular confined compact reinforced composite axial compression stub columns
文章编号:
1006-7930(2023)01-0085-08
作者:
高春彦1樊 荣2刘明洋3刘勇飞4
(1.内蒙古科技大学 土木工程学院,内蒙古 包头 014010; 2.中钢设备有限公司包头分公司,内蒙古 包头 014010; 3.上海宝冶集团有限公司,上海 201900,4.包钢西北创业建设有限公司,内蒙古 包头 014010)
Author(s):
GAO Chunyan1 FAN Rong2 LIU Mingyang3 LIU Yongfei4
(1.School of Civil Engineering, Inner Mongolia University of Science and Technology, Inner Mongolia Baotou 014010, China; 2.Sinosteel Equipment & Engineering Co., Ltd. Baotou Branch, Inner Mongolia Baotou 014010, China; 3.Shanghai Baoye Group Co., Ltd., Shanghai 201900, China; 4.Baogang Northwest Venture Construction Co., Ltd., Inner Mongolia Baotou 014010,China)
关键词:
密实增强混凝土 钢纤维体积掺量 套箍系数 承载力
Keywords:
compact reinforced composite(CRC) steel fiber volume content confinement coefficient bearing capacity
分类号:
TU398.9
DOI:
10.15986/j.1006-7930.2023.01.011
文献标志码:
A
摘要:
以钢纤维体积掺量、套箍系数为变化参数,通过对非约束密实增强混凝土(CRC)和方钢管约束CRC棱柱体短柱进行轴向加载试验,研究了试件的破坏特征、荷载-变形关系、主要特征点指标等,揭示了各变化参数的影响规律.结果表明:方钢管约束CRC的破坏形态为钢管焊缝不同程度的撕裂破坏,焊缝撕裂范围内核心CRC被压碎,其破坏形态完全不同于非约束CRC的剪切型破坏.方钢管约束使得核心CRC轴压强度明显提高,纵向变形性能大大改善.套箍系数对试件轴压力学性能的影响最为显著,而钢纤维体积掺量对试件轴压强度和变形能力的影响较小.
Abstract:
With the steel fiber volume content and confinement coefficient as variable parameters, the axial loading tests were completed on the unconfined compact reinforced composite(CRC)and the square steel tubular confined CRC prismatic stub columns, the failure characteristics, load-deformation relationships and the main characteristic point indexes of specimens were studied, and the influence laws of variable parameters were revealed. The experimental results show that the welds of steel tube were torn in various degree and the core CRC within the weld tearing range were crushed for the square steel tubular confined CRC specimens, whose failure mode are completely different from the shear failure of the unconfined CRC specimens. The axial compressive strength of core CRC significantly increases and the longitudinal deformation performance greatly improves due to the constraint of steel tube. The confinement coefficient has the most significant effect on the axial compression performance of the confined CRC, while the steel fiber volume content has little effect on the axial compressive strength and deformation capacity of confined CRC.

参考文献/References:

[1] HENRIK B H. Compact reinforced composite: US4979992 A[P].1988-02-09.
[2]AARUP B, WEISS J, KOVLER K,et al. CRC-a special fibre reinforced high performance concrete[C]//International Symposium on Advances in Concrete through Science and Engineering, Northwestern. Evanston, Illinois:APA,2004.
[3]RAHMAN S, MOLYNEAUX T, PATNAIKUNI I. Ultra high performance concrete:recent applications and research[J]. Australian Journal of Civil Engineering, 2005, 2:13-20.
[4]KAPTIJN N, BLOM J. A new bridge deck for the kaag bridges the first crc(compact reinforced composite)application in civil infrastructure[J]. Science & Engineering of Composite Materials, 2002, 10(6): 397-402.
[5]GU C P, YE G, SUN W. Ultrahigh performance concrete-properties, applications and perspectives[J]. Science China: Technological Sciences, 2015(4): 587-599.
[6]WANG W, WU C, LI J, et al. Behavior of ultra-high performance fiber-reinforced concrete(UHPFRC)filled steel tubular members under lateral impact loading[J]. International Journal of Impact Engineering, 2019, 132(OCT.):1-24.
[7]XU S, WU C, LIU Z, et al. Experimental investigation on the cyclic behaviors of ultra-high performance steel fiber reinforced concrete filled thin-walled steel tubular columns[J]. Thin-Walled Structures, 2019, 140(JUL.): 1-20.
[8]WU H, REN G M, FANG Q, et al. Response of ultra-high performance cementitious composites filled steel tube(UHPCC-FST)subjected to low-velocity impact[J]. Thin-Walled Structures, 2019, 144(Nov.): 106341.1-106341.14.
[9]邵旭东,邱明红.基于UHPC材料的高性能装配式桥梁结构研发[J].西安建筑科技大学学报(自然科学版),2019,51(2):160-167.
SHAO Xudong, QIU Yongming. Research on high performance fabricated bridge structures based on UHPC[J]. J. of Xi'an Univ. of Arch. & Tech.(Natural Science), 2019,51(2):160-167.
[10]胡翱翔,梁兴文,于婧,等. 超高性能混凝土轴心受拉力学性能试验研究[J].湖南大学学报(自然科学版), 2018, 45(9): 30-37.
HU Aoxiang, LIANG Xingwen, YU Jing, et al. Experimental study on axial tensile mechanical properties of ultra-high performance concrete[J]. Journal of Hunan University(Natural Science), 2018, 45(9): 30-37.
[11]HU Aoxiang, YU Jing, LIANG Xingwen, et al. Tensile characteristics of ultra-high-performance concrete[J]. Magazine of Concrete Research, 2018, 70(5/6):314-324.
[12]胡翱翔,梁兴文,史庆轩,等.高强钢筋与超高性能混凝土黏结性能试验研究[J].西安建筑科技大学学报(自然科学版),2021,53(4):534-544,610.
HU Aoxiang, LIANG Xingwen, SHI Qingxun, et al. Bond characteristics between high strength bars and ultra-high performance concrete[J]. J. of Xi'an Univ. of Arch. & Tech.(Natural Science), 2021,53(4): 534-544, 610.
[13]梁兴文,汪萍,徐明雪,等. 配筋超高性能混凝土梁受弯性能及承载力研究[J].工程力学, 2019, 36(5): 110-119.
LIANG Xingwen, WANG Ping, XU Mingxue, et al. Study on flexural behavior and bearing capacity of reinforced ultra-high performance concrete beams[J]. Engineering Mechanics, 2019, 36(5): 110-119.
[14]梁兴文,王照耀,于婧,等.超高性能混凝土有腹筋梁受剪性能及受剪承载力研究[J].土木工程学报, 2018, 51(10):56-67.
LIANG Xingwen, WANG Zhaoyao, YU Jing et al. Study on shear performance and shear bearing capacity of ultra-high performance concrete beams with web reinforcement[J].China Civil Engineering Journal, 2018,51(10):56-67.
[15]WANG Y B, Richard Liew J Y. Constitutive model for confined ultra-high strength concrete in steel tube[J]. Construction & Building Materials, 2016, 126(NOV.15): 812-822.
[16]Portolés J M, SERRA E, ROMERO M L. Influence of ultra-high strength infill in slender concrete-filled steel tubular columns[J]. Journal of Constructional Steel Research, 2013, 86(jul.):107-114.
[17]颜燕祥,徐礼华,蔡恒,等. 高强方钢管超高性能混凝土短柱轴压承载力计算方法研究[J].建筑结构学报,2019,40(12):128-137.
YAN Yanxiang, XU Lihua, CAI Heng, et al. Research on the calculation method of axial compression bearing capacity of ultra-high performance concrete filled square steel tubular short columns[J]. Journal of Building Structures, 2019, 40(12): 128-137.
[18]王杨. 钢管约束活性粉末混凝土短柱轴压性能及承载力计算研究[D].西安:西安建筑科技大学,2018.
WANG Yang. Research on axial compression performance and bearing capacity of steel tube confined reactive powder concrete short columns [D]. Xi 'an:Xi'an Univ. of Arch.& Tech., 2018.
[19]戎芹,曾宇声,侯晓萌,等. 圆钢管钢纤维活性粉末混凝土短柱轴压性能试验研究[J].建筑结构学报,2019,40(3):247-253.
RONG Qin,ZENG Yusheng,HOU Xiaomeng et al. Experimental study on axial compression performance of steel fiber reinforced reactive powder concrete circular steel tubular short columns[J]. Journal of Building Structures, 2019,40(3):247 -253.
[20]罗华. 钢管活性粉末混凝土柱受压性能试验与理论研究[D].北京:北京交通大学,2015:56-71.
LUO Hua. Experimental and theoretical study on compressive behavior of reactive powder concrete filled steel tubular columns [D]. Beijing:Beijing Jiaotong University, 2015:56-71.
[21]韩林海.钢管混凝土结构—理论与实践[M].北京: 北京科学出版社,2016.
HAN Linhai. Concrete-filled steel tube structure-theory and practice[M]. Beijing: Beijing Science Press, 2016.

备注/Memo

备注/Memo:
收稿日期:2021-11-17修改稿日期:2023-01-18
基金项目:国家自然科学基金项目(51968058),内蒙古科技大学建筑科学研究所开放基金项目(JYSJJ-2021M01)
第一作者:高春彦(1978—),女,博士,副教授,主要从事组合结构及结构抗震性能研究. E-mail:gao-197844@163.com
通信作者:樊 荣(1997—),女,硕士,主要从事组合结构性能研究.E-mail:1461523125@qq.com
更新日期/Last Update: 2023-02-20