[1]檀姊静,贺思渝,赵敬源.地铁车站空调系统瞬态能耗预测模型及应用研究[J].西安建筑科技大学学报(自然科学版),2023,55(01):147-153.[doi:10.15986/j.1006-7930.2023.01.018 ]
 TAN Zijing,HE Siyu,ZHAO Jingyuan.Transient energy consumption model and its application on cold source optimization of air conditioning system in subway station[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(01):147-153.[doi:10.15986/j.1006-7930.2023.01.018 ]
点击复制

地铁车站空调系统瞬态能耗预测模型及应用研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
55
期数:
2023年01期
页码:
147-153
栏目:
出版日期:
2023-02-28

文章信息/Info

Title:
Transient energy consumption model and its application on cold source optimization of air conditioning system in subway station
文章编号:
1006-7930(2023)01-0147-07
作者:
檀姊静1贺思渝1赵敬源2
(1.长安大学 建筑工程学院,陕西 西安 710060; 2.长安大学 建筑学院,陕西 西安 710060)
Author(s):
TAN Zijing1 HE Siyu1 ZHAO Jingyuan2
(1.Chang'an University, School of Civil Engineering, Xi'an 710060, China; 2.Chang'an University, School of Architecture, Xi'an 710060, China)
关键词:
地铁车站 空调系统 分时调控 能耗预测 冷源优化
Keywords:
subway station air conditioning system transient control energy consumption prediction cold source optimization
分类号:
TU83
DOI:
10.15986/j.1006-7930.2023.01.018
文献标志码:
A
摘要:
降低地铁车站空调系统能耗是实现地铁节能的关键.地铁车站空调系统能耗受客流量影响,存在显著的逐时变化.地铁车站空调系统节能设计及运行优化需要以准确的瞬态能耗预测为基础.据此,本研究搭建了基于负荷判断和分时调控的地铁车站空调系统瞬态能耗预测模型,并根据现场实测数据对该模型的准确性进行了验证.在此基础上,对该模型在地铁车站空调系统冷源方案优化中的应用进行了探索.以广州某标准站为例,对常规水冷冷水、整体式蒸发冷凝、直接膨胀式蒸发冷凝三种冷源方案下的系统全年逐时能耗进行预测,进而基于技术经济分析对这三种常用冷源方案在地铁车站空调系统中的适用性进行了讨论.研究结果表明:在三种冷源方案中,直膨式蒸发冷凝方案的节能性能最佳,虽然其初投资高于常规冷水水冷空调系统,但年综合运行费用低,具有最高的经济效益.
Abstract:
Reducing energy consumption of air conditioning system is the key of realizing subway station energy-saving. Energy consumption of air conditioning system in subway station is influenced by passenger flow volume and shows significant hourly variation. Energy efficiency design and operation optimization of air conditioning system in subway station is based on accurate transient energy consumption prediction. Accordingly, a transient energy consumption model of subway station ventilation and air conditioning system is presented in this study. The prediction accuracy of this model was proved to be acceptable based on field measurement. Then, the application of this model on cold source optimization was discussed. A standard station in Guangzhou was taken as an example, the annual hourly energy consumption under three different cold source schemes: conventional water-cooling system, integral evaporative cooling system and direct expansion evaporative cooling system was numerically investigated. Further, technical and economic efficiency was discussed, applicability of three cold source schemes were discussed. The results demonstrate that direct expansion evaporative cooling is the most energy-efficient cold source scheme and has the highest economic benefits due to its lowest annual combined operating expenses.

参考文献/References:

[1] LI G, MENG X, ZHANG X, et al. An innovative ventilation system using piston wind for the thermal environment in Shanghai subway station[J]. Journal of Building Engineering, 2020, 32:101276.
[2]LV W, LI A, MA J, et al. Relative importance of certain factors affecting the thermal environment in subway stations based on field and orthogonal experiments[J]. Sustainable Cities and Society, 2020, 56:102107.
[3]YIN H, YANG C, YI L, et al. Ventilation and air conditioning system of deep-buried subway station in sub-tropical climates: Energy-saving strategies[J]. Applied Thermal Engineering, 2020, 178:115555.
[4]PAN S, WANG H, PEI F, et al. An investigation on energy consumption of air conditioning system in Beijing subway stations[J]. Energy Procedia, 2017, 142:2568-2573.
[5]PAN S, PEI F, WEI Y, et al. Design and experimental study of a novel air conditioning system using evaporative condenser at a subway station in Beijing, China[J]. Sustainable Cities and Society, 2018, 43:550-562.
[6]郭谊婵. 蒸发式冷凝技术在地铁车站空调系统中的应用研究[J]. 黑龙江科技信息, 2017(17): 82-83.
GUO Yichan. Research on application of evaporative condensation technology in air conditioning system of metro station[J]. Heilongjiang Science and Technology Information, 2017(17): 82-83.
[7]WEN X, CAI L, ZHANG X, et al. Theoretical and experimental research on high efficiency screw chiller used in subway station[J]. Procedia Engineering, 2017, 205:373-380.
[8]SU Z, LI X. Sub-system energy model based on actual operation data for subway stations[J]. Sustainable Cities and Society, 2020, 52:101835.
[9]FUKUYO K. Application of computational fluid dynamics and pedestrian-behavior simulations to the design of task-ambient air-conditioning systems of a subway station[J]. Energy, 2006, 31(5): 706-18.
[10]王晖, 郝盛. 地铁环控系统节能诊断分析[J]. 都市快轨交通, 2012, 25(3): 48-51.
WANG Hui, HAO Sheng. Energy-saving diagnosis analysis of subway environmental control system[J]. Metropolitan Rail Transit, 2012, 25(3): 48-51.
[11]许巍, 王怀良, 罗硕成. 蒸发式冷凝空调系统在地铁中的应用[J]. 暖通空调, 2011, 41(6): 43-6.
XU Wei, WANG Huailiang, LUO Shuocheng. Application of evaporative condensing air conditioning system in metro[J]. HVAC, 2011, 41(6): 43-46.
[12]苏晓青, 黄翔, 高源基. 蒸发式冷凝(冷却)技术在地铁通风空调系统中的应用[J]. 制冷与空调, 2016, 16(9): 12-4,20.
SU Xiaoqing, HUANG Xiang, GAO Yuanji. Application of evaporative condensation(cooling)technology in subway ventilation and air-conditioning system[J]. Refrigeration and Air Conditioning, 2016, 16(9): 12-14,20.
[13]周游, 李财钧. 广州地铁集中空调冷源的选择[J]. 制冷与空调, 2015, 15(7): 54-58,42.
ZHOU You, LI Caijun. Selection of cold sources for centralized air conditioning in Guangzhou metro[J]. Refrigeration and Air Conditioning, 2015, 15(7): 54-58,42.
[14]张超, 丁路. 蒸发冷凝式螺杆冷水机组在地铁车站空调系统中的应用[J]. 暖通空调, 2018, 48(1): 96-98,108.
ZHANG Chao, DING Lu. Application of evaporative-condensing screw chiller in the air-conditioning system of subway station[J]. HVAC, 2018, 48(1): 96-98,108.
[15]石金凤, 张静, 刘善金, 等. 南京某地铁换乘车站空调冷源设置方案研究[J]. 都市快轨交通, 2019, 32(1): 78-85.
SHI Jinfeng, ZHANG Jing, LIU Shanjin, et al. Research on the setting plan of air-conditioning cold source for a subway transfer station in Nanjing[J]. Metropolitan Rail Transit, 2019, 32(1): 78-85.
[16]付强, 冯炼, 袁中原. 地铁车站变风量空调系统能耗模拟分析[J]. 制冷与空调(四川), 2019, 33(1): 21-24,39.
FU Qiang, FENG Lian, YUAN Zhongyuan. Simulation analysis of energy consumption of variable air volume air conditioning system in metro station[J]. Refrigeration and Air Conditioning(Sichuan), 2019, 33(1): 21-24,39.
[17]常军. 北京新建地铁通风空调系统模拟分析[J]. 建筑科学, 2006(5): 27-34.
CHANG Jun. Simulation analysis of ventilation and air conditioning system in Beijing's new metro[J]. Building Science, 2006(5): 27-34.
[18]朱培根, 张宏, 何志康, 等. 地铁环控节能策略研究[J]. 制冷与空调, 2010, 24(5): 80-3.
ZHU Peigen, ZHANG Hong, HE Zhikang, et al. Research on energy conservation strategy of metro environmental control[J]. Refrigeration and Air Conditioning, 2010, 24(5): 80-83.
[19]朱培根, 朱颖心, 李晓峰. 地铁环控模拟与分析[J]. 地下空间, 2004(2): 161-5.
ZHU Peigen, ZHU Yinxin, LI Xiaofeng. Metro environmental control simulation and analysis[J]. Underground Space, 2004(2): 161-165.
[20]周群, 高吉祥, 罗佳. 直膨式蒸发冷凝空调系统应用于南方地铁车站的可行性分析[J]. 建筑技术开发, 2017(1): 151-152.
ZHOU Qun, GAO Jixiang, LUO Jia. Feasibility analysis of direct expansion evaporative condensing air conditioning system applied in southern metro station[J]. Building Technology Development, 2017(1): 151-152.
[21]李国庆, 孟鑫, 张晓伟, 等. 新型蒸发冷凝型冷媒直膨式通风空调系统在地铁车站中的应用[J]. 都市快轨交通, 2019, 32(3):52-56.
LI Guoqing, MENG Xin, ZHANG Xiaowei, et al. Application of new type of evaporative condensing refrigerant direct expansion ventilation and air conditioning system in metro station[J]. Metropolitan Rail Transit, 2019. 32(3):52-56.

相似文献/References:

[1]权登州,王毅红,井彦林,等.黄土区地铁车站动力分析中的无限元传输边界[J].西安建筑科技大学学报(自然科学版),2015,47(04):537.[doi:10.15986/j.1006-7930.2015.04.013]
 QUAN Dengzhou,WANG Yihong,JING Yanlin,et al.Infinite-element transmitting boundary in dynamic analysis of subway station in loess area[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2015,47(01):537.[doi:10.15986/j.1006-7930.2015.04.013]

备注/Memo

备注/Memo:
收稿日期:2021-09-15修改稿日期:2023-01-18
基金项目:国家自然科学基金资助项目(52008025)
第一作者:檀姊静(1988—),女,博士,副教授,从事建筑节能研究.E-mail:tanzijing01@163.com
通信作者:赵敬源(1972—),女,博士,教授,从事建筑节能研究.E-mail:zjyqtt@163.com
更新日期/Last Update: 2023-02-20