[1]张 卜,卢立东,钟紫蓝,等.竖井结构初衬及二次衬砌竖向地震响应解析解[J].西安建筑科技大学学报(自然科学版),2023,55(02):196-204.[doi:10.15986/j.1006-7930.2023.02.006 ]
 ZHANG Bu,LU Lidong,ZHONG Zilan,et al.Analytical solution of vertical seismic response of primary lining and secondary lining of shaft structure[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(02):196-204.[doi:10.15986/j.1006-7930.2023.02.006 ]
点击复制

竖井结构初衬及二次衬砌竖向地震响应解析解()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
55
期数:
2023年02期
页码:
196-204
栏目:
出版日期:
2023-04-28

文章信息/Info

Title:
Analytical solution of vertical seismic response of primary lining and secondary lining of shaft structure
文章编号:
1006-7930(2023)02-0196-09
作者:
张 卜12卢立东1钟紫蓝12姬若愚1杜修力12
(1. 北京工业大学 城市建设学部,北京 100124; 2. 北京工业大学 城市与工程安全减灾教育部重点实验室,北京 100124)
Author(s):
ZHANG Bu12 LU Lidong1 ZHONG Zilan12 JI Ruoyu1 DU Xiuli12
(1.Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China; 2. Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education,Beijing University of Technology,Beijing 100124, China)
关键词:
地下结构抗震 竖井地震响应 竖井衬砌 弹性地基杆
Keywords:
seismic resistance of underground structures shaft seismic response shaft lining elastic foundation rod
分类号:
TU9; U45
DOI:
10.15986/j.1006-7930.2023.02.006
文献标志码:
A
摘要:
基于弹性地基杆理论建立了考虑竖井结构初衬和二次衬砌竖向地震响应力学模型。将竖井初衬和二次衬砌简化为两根平行的杆,采用均布的弹簧模拟竖井初衬与二次衬砌间的切向相互作用,推导了竖向地震作用下的竖井振动微分控制方程,通过将场地地震自由场位移转换为施加在初衬上的简谐荷载实现了地震动作用施加,结合分布传递函数法基本理论实现了竖井初衬和二次衬砌竖向地震响应快速求解,并通过与有限元数值模拟方法对比,验证了本文解析解的可行性。最后应用该解析解表达式分别从地基弹簧刚度、二次衬砌刚度和竖井外径的角度出发对竖井顶部地震响应开展参数化分析。结果发现:随着地基弹簧刚度增大,初衬顶部的竖向位移响应会略微增大,二次衬砌响应却会减小; 二次衬砌刚度的变化对竖井顶部竖向位移响应无显著影响; 随着竖井外径的增大,初衬和二次衬砌顶部竖向位移响应均会减小,其中二次衬砌减小更为明显.研究方法和结论可为竖井抗震设计提供一定参考,并为今后竖井的抗震研究提供理论方法和科学依据。
Abstract:
In this paper, a mechanical model of the vertical seismic response of shaft with considering primary lining and secondary lining is established based on the elastic foundation rod theory. The primary lining and secondary lining of the shaft are simplified into two parallel rods, a homogeneous spring is used to simulate the tangential interaction between the primary lining and the secondary lining of the shaft, and the differential control equation of the vibration of the shaft under vertical earthquake is derived. The ground motion is realized by converting the free field displacement of the site earthquake into a simple harmonic load applied to the primary lining. Combined with the basic theory of the distributed transfer function method, the vertical seismic response of the primary lining and the secondary lining of the shaft is quickly solved. The feasibility of the analytical solution is verified by comparison with the finite element numerical simulation method. Finally, the expressions of the analytical solution are applied to parametrically analyze the top seismic response of the shaft from the perspectives of the foundation spring stiffness, secondary liner stiffness and shaft outer diameter respectively. The results show that with the increase of foundation spring stiffness, the vertical displacement response at the top of the primary lining will increase slightly, while the response of the secondary lining will decrease. The change of secondary lining stiffness has no significant effect on the vertical displacement response at the top of the shaft. With the increase of the outer diameter of the shaft, the vertical displacement response at the top of the primary lining and the secondary lining will decrease, and the decrease of the secondary lining is more obvious. The research methods and conclusions can provide some reference for seismic design of shaft, and provide theoretical methods and scientific basis for seismic research of shaft in the future.

参考文献/References:

[1] MATSUDA T. A study on damage of underground subway structures during the 1995 hyogoken nanbu earthquake[J]. Geotechnical Engineering in Recovery From Urban Earthquake Disaster, KIG-form, 1997, 97: 339-348.
[2]HUO H, BOBET A, Fernández G, et al. Load transfer mechanisms between underground structure and surrounding ground: evaluation of the failure of the Daikai station[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(12): 1522-1533.
[3]KONTOE S, ZDRAVKOVIC L, POTTS D M, et al. Case study on seismic tunnel response[J]. Canadian Geotechnical Journal, 2008, 45(12): 1743-1764.
[4]WANG W L, WANG T T, SU J J, et al. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi earthquake[J]. Tunnelling and Underground Space Technology, 2001, 16(3): 133-150.
[5]杜修力, 李洋, 许成顺, 等. 1995 年日本阪神地震大开地铁车站震害原因及成灾机理分析研究进展[J]. 岩土工程学报, 2018, 40(2): 223-236.
DU Xiuli, LI Yang, XU Chengshun, et al. Review on damage causes and disaster mechanism of Daikai subway station during 1995 Osaka-Kobe Earthquake[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 223-236.
[6]高波, 王峥峥, 袁松, 等. 汶川地震公路隧道震害启示[J]. 西南交通大学学报, 2009, 44(3): 336-341,374.
GAO Bo, WANG Zhengzheng, YUAN Song, et al. Lessons learnt from damage of high way tunnels in Wenchuan earthquake[J]. Journal of Southwest Jiaotong University, 2009, 44(3): 336-341,374.
[7]HASHASH Y M A, HOOK J J, SCHMIDT B, et al. Seismic design and analysis of underground structures[J]. Tunnelling and Underground Space Technology, 2001, 16(4): 247-293.
[8]陈国兴, 陈苏, 杜修力, 等. 城市地下结构抗震研究进展[J]. 防灾减灾工程学报, 2016, 36(1): 1-23.
CHEN Guoxing, CHEN Su, DU Xiuli, et al. Review of seismic damage, model test, available design and analysis methods of urban underground Structures: Retrospect and prospect[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(1): 1-23.
[9]陈向红, 陶连金, 陈曦. 水下隧道附属竖井的横向地震响应研究[J]. 科学技术与工程, 2016, 16(13): 273-278.
CHEN Xianghong, TAO Lianjin, CHEN Xi. Study on the transverse seismic response of underwater tunnel shaft [J]. Science Technology and Engineering, 2016, 16(13): 273-278.
[10]申玉生, 朱双燕, 资晓鱼, 等. 穿越上软下硬地层公路隧道竖井结构抗震性能分析[J]. 北京交通大学学报, 2019, 43(3): 98.
SHEN Yusheng, ZHU Shuangyan, ZI Xiaoyu, et al. Analysis on seismic performance of highway tunnel shafts crossing soft and hard stratum[J]. Journal of Beijing Jiaotong University, 2019, 43(3): 98.
[11]禹海涛, 陈功. 任意形状深埋隧道地震响应解析解[J]. 岩土工程学报, 2021, 43(7): 1331-1337.
YU Haitao, CHEN Gong. Analytical solution for seismic response of deep tunnels with arbitrary cross-section shapes[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1331-1337.
[12]ZHONG Z, WANG Z, ZHAO M, et al. Structural damage assessment of mountain tunnels in fault fracture zone subjected to multiple strike-slip fault movement[J]. Tunnelling and Underground Space Technology, 2020, 104: 103527.
[13]KIRZHNER F, ROSENHOUSE G. Numerical analysis of tunnel dynamic response to earth motions[J]. Tunnelling and Underground Space Technology, 2000, 15(3): 249-258.
[14]AMOROSI A, BOLDINI D. Numerical modelling of the transverse dynamic behaviour of circular tunnels in clayey soils[J]. Soil Dynamics and Earthquake Engineering, 2009, 29(6): 1059-1072.
[15]WANG Y X, SHAN S B, ZHANG C, et al. Seismic response of tunnel lining structure in a thick expansive soil stratum[J]. Tunnelling and Underground Space Technology, 2019, 88: 250-259.
[16]袁勇, 包蓁, 禹海涛, 等. 考虑行波效应的盾构隧道多点振动台试验[J]. 中国公路学报, 2017, 30(8): 174.
YUAN Yong, BAO Zhen, YU Haitao, et al. Multi-point shaking table test on shield tunnels in consideration of wave-passage effect[J]. China Journal of Highway and Transport, 2017, 30(8): 174.
[17]袁勇, 禹海涛, 燕晓, 等. 超长沉管隧道多点振动台试验模拟与分析[J]. 中国公路学报, 2016, 29(12): 157-165.
YUAN Yong, YU Haitao, YAN Xiao, et al. Multi-point shaking table test simulation and analysis of a super-long immersed tunnel[J]. China Journal of Highway and Transport, 2016, 29(12): 157-165.
[18]禹海涛, 李, 袁勇, 等. 用于长隧道多点振动台试验的节段式模型箱及其适用性研究[J]. 中国公路学报, 2016, 29(12): 166.
YU Haitao, LI Chong, YUAN Yong, et al. Research on segmental model container and its validation for multi-point shaking table test of long tunnels[J]. China Journal of Highway and Transport, 2016, 29(12): 166.
[19]PARK K H, TANTAYOPIN K, TONTAVANICH B, et al. Analytical solution for seismic-induced ovaling of circular tunnel lining under no-slip interface conditions: A revisit[J]. Tunnelling and Underground Space Technology, 2009, 24(2): 231-235.
[20]禹海涛, 王祺, 刘涛. 均质地层长隧道纵向地震响应解析解[J]. 隧道与地下工程灾害防治, 2020, 2(1): 34-41.
YU Haitao, WANG Qi, LIU Tao. Analytical solution for longitudinal seismic response of long tunnels in homogeneous stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(1): 34-41.
[21]张栋梁, 杨林德, 谢永利, 等. 盾构隧道抗震设计计算的解析解[J]. 岩石力学与工程学报, 2008, 27(3): 543-549.
ZHANG Dongliang, YANG Linde, XIE Yongli. Analytical solution for aseismic design calculation of shield tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(3): 543-549.
[22]ZHANG B, CHEN Z Y. General winkler model for kinematic responses of shafts in linear soil[J]. International Journal of Computational Methods, 2020, 17(5): 1940004.
[23]CHEN Z, ZHANG B. Seismic responses of the large-scale deep shaft in Shanghai soft soils[C]//Geo Shanghai International Conference.Singapore: Springer, 2018: 103-111.
[24]ZHANG B, CHEN Z. Effects of nominal flexibility ratio and shaft dimensionless parameters on the seismic response characteristics of deep shafts[J]. Soil Dynamics and Earthquake Engineering, 2019, 120: 257-261.
[25]ZHANG J, YUAN Y, BILOTTA E, et al. Analytical solution for dynamic responses of the vertical shaft in a shaft-tunnel junction under transverse loads[J]. Soil Dynamics and Earthquake Engineering, 2019, 126: 105779.
[26]ZHANG J, YUAN Y, ZHANG B, et al. Analytical solutions for seismic responses of the tunnel in a shaft-tunnel junction under transverse excitations[J]. Soil Dynamics and Earthquake Engineering, 2019, 127: 105826.
[27]ZHANG J, XIAO M, BILOTTA E, et al. Analytical solutions for seismic responses of shaft-tunnel junction under travelling SH-wave[J]. Tunnelling and Underground Space Technology, 2021, 112: 103910.
[28]MAYORAL J M, ARGYROUDIS S, Casta?on E. Vulnerability of floating tunnel shafts for increasing earthquake loading[J]. Soil Dynamics and Earthquake Engineering, 2016, 80: 1-10.
[29]KIM Y, LIM H, JEONG S. Seismic response of vertical shafts in multi-layered soil using dynamic and pseudo-static analyses[J]. Geomechanics and Engineering, 2020, 21(3): 269-277.
[30]GUERRA C S, LABAKI J, BARROS P L A. Dynamic response of large diameter, concrete-lined vertical shafts under external and seismic excitation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2022(8):46.
[31]LIU S, YANG B. A closed-form analytical solution method for vibration analysis of elastically connected double-beam systems[J]. Composite Structures, 2019, 212: 598-608.
[32]刘晶波, 王文晖, 赵冬冬, 等. 地下结构抗震分析的整体式反应位移法[J]. 岩石力学与工程学报, 2013, 32(8): 1618-1624.
LIU Jingbo, WANG Wenhui, ZHAO Dongdong, et al. Integral response deformation method for seismic analysis of underground structure[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1618-1624.
[33]DAI D, El Naggar M H, ZHANG N, et al. Kinematic response of an end-bearing pile subjected to vertical P-wave considering the three-dimensional wave scattering[J]. Computers and Geotechnics, 2020, 120: 103368.
[34]GAZETAS G, MAKRIS N. Dynamic pile-soil-pile interaction. Part I: Analysis of axial vibration[J]. Earthquake Engineering & Structural Dynamics, 1991, 20(2): 115-132.
[35]MYLONAKIS G, GAZETAS G. Kinematic pile response to vertical P-wave seismic excitation[J]. Journal of Geotechnical and geoenvironmental Engineering, 2002, 128(10): 860-867.

备注/Memo

备注/Memo:
收稿日期:2022-07-11修改稿日期:2023-02-20
基金项目:国家重点研发计划资助(2022YFC3004300); 中国博士后科学基金资助项目(2021M700311); 北京市博士后国际交流培养资助派出项目(2022-PC-03)
第一作者:张 卜(1990—),男,博士,助理研究员,主要从事隧道及地下结构抗震研究. E-mail: zhangbu@bjut.edu.cn
通信作者:钟紫蓝(1986—),男,博士,副研究员,主要从事地下结构抗震研究. E-mail: zilanzhong@bjut.edu.cn
更新日期/Last Update: 2023-04-20