[1]陈敬一,周雨龙.考虑阻尼器失效的屈服消能摇摆双层框架墩结构地震反应分析[J].西安建筑科技大学学报(自然科学版),2023,55(02):249-254.[doi:10.15986/j.1006-7930.2023.02.013 ]
 CHEN Jingyi,ZHOU Yulong.Seismic response analysis of the double-deck rocking bridge frame with additional yielding dampers considering damper failure[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(02):249-254.[doi:10.15986/j.1006-7930.2023.02.013 ]
点击复制

考虑阻尼器失效的屈服消能摇摆双层框架墩结构地震反应分析()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
55
期数:
2023年02期
页码:
249-254
栏目:
出版日期:
2023-04-28

文章信息/Info

Title:
Seismic response analysis of the double-deck rocking bridge frame with additional yielding dampers considering damper failure
文章编号:
1006-7930(2023)02-0249-06
作者:
陈敬一1周雨龙2
(1.中国地震灾害防御中心,北京 100029; 2.交通运输部公路科学研究院 旧桥检测与加固交通行业重点实验室,北京 100088)
Author(s):
CHEN Jingyi1 ZHOU Yulong2
(1.China Earthquake Disaster Prevention Center, Beijing 100029, China; 2.Key Laboratory of Old Bridge Inspection and Reinforcement Technology Industry, Research Institute of Highway Ministry of Transport, Beijing 100088, China)
关键词:
双层桥梁 屈服消能摇摆结构 动力分析模型 地震反应 阻尼器参数
Keywords:
Double-deck bridge rocking structure with yield energy dissipation dampers dynamic analytical model seismic response damper parameters
分类号:
P315
DOI:
10.15986/j.1006-7930.2023.02.013
文献标志码:
A
摘要:
针对应用延性抗震理念设计的双层桥梁结构震后塑性损伤严重、功能恢复困难的现状,本文基于摇摆理念提出一种屈服消能摇摆双层框架墩结构体系,以控制结构地震损伤和提升结构震后功能可恢复能力。应用拉格朗日方程和动量矩定理建立了该类摇摆结构的刚体动力反应分析模型,并考虑了桥墩复位碰撞造成的能量损失和防屈曲阻尼器的失效。本文以常规双层桥梁结构尺寸的摇摆桥梁为研究对象,采用远场地震动、无脉冲近场地震动和脉冲近场地震动对屈服消能摇摆双层框架墩结构进行了地震反应分析和阻尼器参数分析。分析结果表明:分析屈服消能摇摆双层框架墩结构地震反应时需考虑阻尼器失效的情况,以防止低估结构地震反应的情况发生; 阻尼器刚度的增加可提升结构体系减隔震效果,而阻尼器失效伸长量过小不利于结构减隔震。
Abstract:
Double-deck viaducts based on traditional ductility design have been found vulnerable to severe earthquake-induced damage and difficult rapid function recovery. To control the seismic damage and improve the post-earthquake recovery capacity, a double-deck bridge is developed with the lower floor designed as a yielding energy dissipation rocking structure. A dynamic analytical model of rigid bodies was established by the Lagrange method and momentum conservation law, and the energy dissipation caused by pier reset collision and the failure of dampers was considered in the analytical model. The failure analysis and parameter analysis of dampers for the double-deck rocking bridge frame system were performed under far-field motions, non pulse near-field motions and pulse near-field motions excitation. The analysis results show that the failure of damper should be considered in the seismic response analysis of the structure, so as to prevent the underestimation of the seismic response of the structure. The increase of damper stiffness can improve the seismic isolation effect of structural system, while the too small damper failure elongation is not conducive to the seismic performance of the structure.

参考文献/References:

[1] BOLLO M, Mahin S A, Moehle J, et al. Observations and implications of tests on the Cypress Street viaduct test structure [R]. UCB/EERC-90/21.California, USA: Earthquake Engineering Research Center, University of California at Berkeley, 1990.
[2]KUNNATH S K, GROSS J L. Inelastic response of the cypress viaduct to the Loma Prieta earthquake [J]. Engineering Structures, 1995, 17(7): 485-493.
[3]周艳,张雷明,刘西拉. 美国Cypress高架桥地震倒塌的仿真分析 [J]. 岩石力学与工程学报,2005,24(17):3035-3044.
ZHOU Yan, ZHANG Leiming, LIU Xila. Collapse simulation and analysis of cypress viaduct during Loma Prieta earthquake [J]. Journal of Rock Mechanics and Engineering, 2005,24(17):3035-3044.
[4]张 洁, 管仲国, 李建中. 双层高架桥梁框架墩抗震性能试验研究 [J]. 工程力学, 2017, 34(2): 120-128.
ZHANG Jie, GUAN Zhongguo, LI Jianzhong. Experimental research on seismic performance of frame piers of double-deck viaducts [J]. Engineering Mechanics, 2017, 34(2): 120-128.
[5]HOUSNER G W. The behavior of inverted pendulum structures during earthquakes [J]. Bulletin of the Seismological Society of America, 1963, 53(2): 403-417.
[6]MANDER J B, CHENG C T. Seismic resistance of bridge piers based on damage avoidance design [R]. New York: US National Center for Earthquake Engineering Research, 1997.
[7]CHENG C T. Shaking table tests of a self-centering designed bridge substructure[J]. Engineering Structures, 2008, 30(12): 3426-3433.
[8]PALERMO A, PAMPANIN S, CALVI G M. Concept and development of hybrid solutions for seismic resistant bridge systems[J]. Journal of Earthquake Engineering, 2005, 9(6): 899-921.
[9]葛继平, 魏红一, 王志强. 循环荷载作用下预制拼装桥墩抗震性能分析[J]. 同济大学学报(自然科学版), 2008, 36(7): 894-899.
GE Jiping, WEI Hongyi, WANG Zhiqiang. Seismic performance of precast segmental bridge column under cyclic loading[J]. Journal of Tongji University(Natural Science), 2008, 36(7): 894-899.
[10]OU Y C, WANG P H, TSAI M S, et al. Large-scale experimental study of precast segmental unbonded posttensioned concrete bridge columns for seismic regions[J]. Journal of structural engineering, 2010, 136(3): 255-264.
[11]MARRIOTT D, PAMPANIN S, BULL D. Dynamic testing of precast,post-tensioned rocking wall systems with alternative dissipating solutions[J]. Bulletin of the New Zealand Society for Earthquake Engineering, 2008,(June):1-16.
[12]郭佳, 辛克贵, 何铭华, 等. 自复位桥梁墩柱结构抗震性能试验研究与分析[J]. 工程力学, 2012, 29(A01): 29-34.
GUO Jia, XIN Kegui, HE Minghua, et al. Experimental study and analysis on the seismic performance of a self-centering bridge pier[J]. Engineering Mechanics, 2012, 29(A01): 29-34.
[13]孙治国,谷明洋,司炳君.外置角钢摇摆-自复位双柱墩抗震性能分析[J]. 中国公路学报, 2017, 30(12): 40-49.
SUN Zhiguo, GU Mingyang, SI Bingjun. Seismic behavior analyses of rocking self-centering double column bridge bents using external angles[J]. China Journal of Highway and Transport, 2017, 30(5):74-80.
[14]ZHOU Y L, HAN Q, DU X L, et al. Shaking table tests of post-tensioned rocking bridge with double-column bents[J]. Journal of Bridge Engineering, 2019, 24(8): 04019080.
[15]孙治国, 赵泰, 韩强, 等. 摇摆-自复位双层桥梁排架墩抗震体系研究[J]. 振动工程学报, 2021, 34(3):472-480.
SUN Zhiguo, ZHAO Taiyi, HAN Qiang, et al. Seismic resistance system for rocking self-centering double deck bridge bents[J]. Journal of Vibration Engineering, 2021, 34(3):472-480.
[16]陈敬一, 杜修力, 韩强,等. 摇摆双层桥梁地震反应及抗倒塌能力分析[J]. 工程力学, 2020, 37(10):56-69.
CHEN Jingyi, DU Xiuli, HAN Qiang, et al. Analysis of seismic response and overturning resistance of rocking double-deck bridge system[J]. Engineering Mechanics, 2020, 37(10):56-69.
[17]HAN Q, JIA Z, XU K, DU X L. Hysteretic behavior investigation of self-centering double-column rocking piers for seismic resilience[J]. Engineering Structures, 2019, 188: 218-232.
[18]DU X L, ZHOU Y L, HAN Q, et al. Shaking table tests of a single-span freestanding rocking bridge for seismic resilience and isolation [J]. Advances in Structural Engineering, 2019: 1369433219859410.
[19]KALLIONTZIS D, SRITHARAN S, SCHULTZ A. Improved coefficient of restitution estimation for free rocking members[J]. Journal of Structural Engineering, 2016, 142(12): 06016002.
[20]FEMA. Quantification of building seismic performance factors: FEMA-P695. [S]. Washington, D. C.: Federal Emergency Management Agency, 2009.

备注/Memo

备注/Memo:
收稿日期:2022-07-11修改稿日期:2023-02-22
基金项目:中国地震局地震科技星火计划(XH23055A); 国家重点研发计划(2019YFC1509401); 中国地震局地震应急青年重点任务(CEAEDEM 202223)
第一作者:陈敬一(1990—),女,博士,工程师,主要从桥梁工程抗震研究. E-mail: Chenbjut@163.com
通信作者:周雨龙(1988—),男,博士,助理研究员,主要桥梁工程抗震研究. E-mail: zhouyuong4554@163.com
更新日期/Last Update: 2023-04-20