[1]陆新宇,王 展,余佳科,等.多向地震对非基岩场地核电厂房动力响应影响研究[J].西安建筑科技大学学报(自然科学版),2023,55(02):280-287.[doi:10.15986/j.1006-7930.2023.02.017 ]
 LU Xinyu,WANG Zhan,YU Jiake,et al.Research of the effect of multi-directional earthquake on the response of nuclear power plant in non-rock site[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(02):280-287.[doi:10.15986/j.1006-7930.2023.02.017 ]
点击复制

多向地震对非基岩场地核电厂房动力响应影响研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
55
期数:
2023年02期
页码:
280-287
栏目:
出版日期:
2023-04-28

文章信息/Info

Title:
Research of the effect of multi-directional earthquake on the response of nuclear power plant in non-rock site
文章编号:
1006-7930(2023)02-0280-08
作者:
陆新宇王 展余佳科齐文浩
(中国地震局工程力学研究所,黑龙江 哈尔滨 150080)
Author(s):
LU Xinyu WANG Zhan YU Jiake QI Wenhao
(Institute of Engineering Mechanics,China Earthquake Administration, Harbin 150080,China)
关键词:
多向地震动 土-结构动力相互作用 核电安全厂房 振动台试验 有限元分析
Keywords:
Multi-directional seismic motion soil-structure dynamic interaction safety-related nuclear structure shaking table test finite element analysis
分类号:
TU435
DOI:
10.15986/j.1006-7930.2023.02.017
文献标志码:
A
摘要:
本文采用大型振动台试验及有限元数值计算方法,研究了多向地震对非基岩场地核电安全厂房动力响应的影响.试验中土体选用均质粉质黏土,将实际核电厂房简化为三层框架-剪力墙结构模型,采用环形层叠剪切箱考虑土体的边界效应.分别输入水平单向和三向人工地震动进行多工况振动台模型试验,并采用有限元方法对振动台试验模型进行了数值模拟,对比讨论了试验和数值计算结果.研究表明:在土-核电厂房体系中,随着输入地震动幅值增大,加速度放大系数减小; 多向地震动的耦合效应会导致核电厂房水平单向的加速度反应减小,且这一结果主要由另一水平方向地震分量产生,而竖向地震分量影响较小; 而多向地震动的组合效应会导致核电厂房水平向的总加速度反应增大.此外,耦合和组合效应均对核电厂房的加速度反应谱有一定影响,耦合效应使反应谱中峰值周期附近幅值出现了明显降低,而组合效应在长周期段(0.10s以上)增大了反应谱幅值.
Abstract:
In this paper, a large-scale shaking table test and finite element numerical computation were carried out to study the effect of multi-directional earthquake on the response of nuclear power plant in non-rock site.In the test, the soil model was uniform silted clay, and the actual nuclear power plant was simplified into a three-story frame shear wall structure model.The annular laminated shear model box was used to take the boundary effect of soil into consideration.The artificial seismic motion were input in only one horizontal direction or three directions for shaking table test.The model of shaking table test were calculated by finite element method, and results of the experiment and numerical computation were compared and discussed.The results of analysis show that the acceleration amplification factor in the soil-nuclear power plant system decreases with the increase of the input seismic motion amplitude.The coupling effect of multi-directional seismic motion leads to the reduction of the horizontal unidirectional acceleration response of the nuclear power plant, and this result is mainly generated by the other horizontal seismic component, while the vertical seismic component has little influence.The associative effect of multi-directional seismic motion increases the total horizontal acceleration response of the nuclear power plant.In addition, both the coupling effect and the associative effect have a certain impact on the acceleration response spectrum of the nuclear power plant.The coupling effect significantly reduces the amplitude near the peak period in the response spectrum, while the associative effect increases the amplitude of the response spectrum in the long period(more than 0.10s).

参考文献/References:

[1] 彭小波.汶川地震强震动记录分析及应用[D].哈尔滨:中国地震局工程力学研究所,2011.
PENG Xiaobo.Analysis of strong motion recordings and its application from Wenchuan earthquake[D].Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2011.
[2]于磊,景立平,汪刚,等.单桩-土-结构振动台试验模型数值计算分析[J].世界地震工程,2020,36(3):151-160.
YU Lei, JING Liping, WANG Gang, et al.Numerical analysis of single pile-soil-structure shaking table test model[J].World Earthquake Engineering, 2020,36(3):151-160.
[3]中华人民共和国住房和城乡建设部.中华人民共和国国家标准-核电厂抗震设计标准:GB50267-2019[S].北京:中国计划出版社,2019.
Ministry of Housing and Urban-Rural Development of the People's Republic of China.Standard for seismic design of nuclear power plants:GB50267-2019[S].Beijing:China Planning Press, 2019.
[4]Jenn-Shin Hwang.Experimental study of isolated building under triaxial ground excitations[J].Journal of Structural Engineering.2000.126(8):879-886.
[5]朱玉华,吕西林,施卫星,等.多向地面运动作用时铅芯橡胶隔震房屋模型振动台试验研究[J].结构工程师,2001(1):34-38.
ZHU Yuhua, LÜ Xilin, SHI Weixing, et al.Study on shaking table tests of model building with lead rubber bearing under multi-direction component input[J].Structural Engineers, 2001(1):34-38.
[6]Ryan K L, Dao N D, Sato E, et al., NEES/E-defense base-isolation tests: Interaction of horizontal and vertical response[C]//Proceedings of the Thirteenth East Asia-Pacific Conference on Structural Engineering and Construction(WCEE-15). Lisbon, Portugal:WCEE,2012,
[7]XU Weizhi; DU Dongsheng; WANG Shuguang; et al. Shaking table tests on the multi-dimensional seismic response of long-span grid structure with base-isolation[J]. Engineering Structures. 2019. 201(000):109802.
[8]沈超,钱德玲,朱志鹏,等.多向地震作用下土-框筒结构动力响应试验研究与数值模拟[J].振动与冲击,2019,38(10):206-214.
SHEN Chao, QIAN Deling, ZHU Zhipeng,et al.Experimental and numerical investigation on the dynamic response of a frame-core tube structure under the excitation of multi-direction seismic waves considering the soil-structure effect[J].Journal of Vibration and Shock, 2019,38(10):206-214.
[9]崔亮,孔常,曲淑英.双向地震作用下填充墙框架结构反应分析[J].防灾科技学院学报,2022,24(1):13-22.
CUI Liang, KUN Jingchang, QU Shuying.Response analysis of infilled wall frame structure under two-direction earthquake[J].Journal of Institute of Disaster Prevention, 2022,24(1):13-22.
[10]POLITOPOULOS I, MOUSSALLAM N. Horizontal floor response spectra of base-isolated buildings due to verticalexcitation[J]. Earthquake Engineering & Structural Dynamics, 2012,41(3):587-592.
[11]闫维明,戴颖楠,陈适才,等.核电厂整体基础隔震体系的振动台试验研究[J].北京工业大学学报,2018,44(12):1513-1520.
YAN Weiming, DAI Yingnan, CHEN Shicai, et al.Shaking table test of a base-isolated nuclear power plant[J].Journal of Beijing University of Technology, 2018,44(12):1513-1520.
[12]刘文光,程颖,李韶平,等.核电厂隔震支座的受拉临界理论与结构振动台试验研究[J].振动与冲击,2019,38(14):153-160.
LIU Wenguang, CHENG Ying, LI Shaoping, et al.Theoretical analysis of bearings in tension and shaking table tests on a base-isolated nuclear power plant structure[J].Journal of Vibration and Shock, 2019,38(14):153-160.
[13]周志光,周龙定,赵锦一.AP1000核电厂模型基底隔震振动台试验研究[J].地震工程与工程振动,2020,40(2):64-72.
ZHOU Zhiguang, ZHOU Longding, ZHAO Jinyi.Shaking table test study of AP1000 base-isolated nuclear power plant[J].Earthquake Engineering and Engineering Dynamics,2020,40(2):64-72.
[14]陈岩,周中一,王友刚,等.多模块高温气冷堆核岛厂房隔震结构振动台试验.土木工程学报:2023,56(1):37-48.
CHEN Yan, ZHOU Zhongyi, WANG Yougang, et al.Shaking table tests on base-isolated nuclear island building of multi-module high temperature gas cooled reactor.China Civil Engineering Journal, 2023,56(1):37-48.
[15]高永武,王涛,戴君武,等.不同场地条件下某新型核电厂房的地震响应试验研究[J].振动与冲击,2017,36(18):214-222.
GAO Yongwu, WANG Tao, DAI Junwu, et al.Experimental research on seismic responses of a new type of nuclear power plant under different site conditions[J].Journal of Vibration and Shock, 2017,36(18):214-222.
[16]景立平,汪刚,李嘉瑞,等.土-桩基-核岛体系动力相互作用振动台试验及数值模拟[J].岩土工程学报,2022,44(1):163-172,207-208.
JING Liping, WANG Gang, LI Jiarui, et al.Shaking table tests and numerical simulations of dynamic interaction of soil-pile-nuclear island system[J].Chinese Journal of Geotechnical Engineering,2022,44(1):163-172,207-208.
[17]王晓辉.非基岩场地核电厂地震反应试验与数值模拟分析[D].北京:北京工业大学,2017.
WANG Xiaohui. Shaking table tests and numerical simulation analysis of nuclear power plants in non-rock site[D]. Beijing: Beijing University of Technology, 2017.
[18]李振宝,李晓亮,唐贞云,等.土-结构动力相互作用的振动台试验研究综述[J].震灾防御技术,2010,5(4):439-450.
LI Zhenbao, LI Xiaoliang, TANG Zhenyun, et al.Summary of shaking table test research on soil structure dynamic interaction[J].Technology for Earthquake Disaster Prevention, 2010,5(4):439-450.
[19]周志光,郭晶,魏晓冬,等.考虑SSI效应的核电结构水平与竖向地震响应的耦合效应研究[J].结构工程师,2018,34(S1):82-87.
ZHOU Zhiguang, GUO Jing, WEI Xiaodong,et al.Research of coupling effect of horizontal and vertical seismic response of nuclear structures considering SSI effect[J].Structural Engineers,2018,34(S1):82-87.

备注/Memo

备注/Memo:
收稿日期:2022-07-11修改稿日期:2023-02-26
基金项目:中国地震局工程力学研究所基本科研业务费专项资助项目(2019B10)
第一作者:陆新宇(1995—),男,博士生,研究方向为土-结构动力相互作用.E-mail: luxinyu@nuaa.edu.cn
更新日期/Last Update: 2023-04-20