[1]蔡远征,张浩,苏明周,等.不锈钢槽式预埋组件受拉性能研究[J].西安建筑科技大学学报(自然科学版),2024,56(02):249-259.[doi:10.15986/j.1006-7930.2024.02.011]
 CAI Yuanzheng,ZHANG Hao,SU Mingzhou,et al.Study on tensile behavior of stainless-steel anchor channel assemblies[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(02):249-259.[doi:10.15986/j.1006-7930.2024.02.011]
点击复制

不锈钢槽式预埋组件受拉性能研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
56
期数:
2024年02期
页码:
249-259
栏目:
出版日期:
2024-04-28

文章信息/Info

Title:
Study on tensile behavior of stainless-steel anchor channel assemblies
文章编号:
1006-7930(2024)02-0249-11
作者:
蔡远征1张浩12苏明周12 袁森1郑勇1孙艳文3
(1.西安建筑科技大学 土木工程学院,陕西 西安 710055; 2.西安建筑科技大学 结构工程与抗震教育部重点试验室,陕西 西安 710055;3.中国建筑标准设计研究院,北京 100048)
Author(s):
CAI Yuanzheng1 ZHANG Hao12 SU Mingzhou12 YUAN Sen1 ZHENG Yong1 SUN Yanwen3
(1.School of Civil Engineering, Xi′an Univ. of Arch. & Tech., Xi′an 710055, China; 2.Key Lab of Structural Engineering and Earthquake Resistance, Ministry of Education (XAUAT),Xi′an 710055, China;3.China Institute of Building Standard Design & Research Co., Ltd., Beijing 100048, China)
关键词:
不锈钢槽式预埋组件受拉承载力延性性能破坏模式
Keywords:
stainless steel anchor channel assemblies tensile load-bearing capacity ductility failure mode
分类号:
TU391
DOI:
10.15986/j.1006-7930.2024.02.011
文献标志码:
A
摘要:
为研究不锈钢槽式预埋组件在拉力作用下的受力性能,首先对S-CAG-53/34、S-CBG-52/34两种不锈钢预埋槽道进行锚杆中心线和槽道跨中位置受拉静载试验.试验结果表明:不锈钢预埋槽道主要发生槽口卷边屈曲破坏.然后,采用有限元分析软件ABAQUS建立2种不锈钢槽式预埋组件的有限元模型,将数值模拟结果与试验结果对比,验证有限元模型的准确性和适用性.最后,建立50个足尺试件的有限元模型,研究槽口卷边厚度、槽道侧壁厚度、锚杆尺寸、锚杆间距以及相邻荷载对不锈钢槽式预埋组件受拉性能的影响.分析结果表明:增加槽道槽口卷边厚度、槽道侧壁厚度以及减少锚杆间距均能有效提高不锈钢槽式预埋组件的受拉承载力;增加槽口卷边及侧壁厚度会使槽道截面刚度提高,从而提高槽道跨中部位受拉承载力;减少锚杆间距使得槽道受弯承载力增加,从而提升槽道跨中部位受拉承载力.改变锚杆长度对槽道跨中位置受拉承载力的影响较小;在一定间距内同时施加多个荷载,会导致部分锚杆承受较高荷载,对槽道承载力产生影响,但这种影响随着锚杆间距减少逐渐降低.
Abstract:
In order to study the mechanical properties of stainless steel anchor channel components under tension, first, tensile static load tests were conducted on the anchor rod centerline and the mid span position of SCAG53/34 and SCBG52/34 stainless steel anchor channels The experimental results showed that the stainless steel anchor channels mainly experienced buckling failure of the channel edge curling. Then, the finite element analysis software ABAQUS was used to establish the finite element models of two kinds of stainless steel anchor channel components. The numerical simulation results were compared with the experimental results to verify the accuracy and applicability of the finite element model. Finally, the finite element model of 50 fullscale specimens was established to study the influence of channel edge thickness, channel side wall thickness, bolt size, bolt spacing and adjacent load on the tensile performance of stainless steel anchor channel components. The analysis results show that increasing the thickness of the channel edge, the thickness of the side wall of the channel and reducing the spacing of the bolts can effectively improve the tensile bearing capacity of the stainless steel anchor channel components. Increasing the thickness of the channel edge and the side wall will increase the stiffness of the channel section, thereby improving the tensile bearing capacity of the middle part of the channel. Reducing the anchor spacing increases the flexural bearing capacity of the channel, thereby improving the tensile bearing capacity of the midspan of the channel. Changing the length of the anchor rod has little effect on the tensile bearing capacity of the midspan position of anchor channel, and applying multiple loads simultaneously within a certain spacing results in some anchor rods bearing higher loads, thereby affecting the bearing capacity of the channel. The analysis results show that this effect gradually decreases as the spacing between anchor rods decreases.

参考文献/References:

[1]MAHRENHOLTZ C, SHARMA A. Comparison of design rules for anchor channels with channel bolts[C]// 3rd International Symposium on Connections between Steel and Concrete (ConSC2017):IEEE Xplore, 2017.

[2]李士平. 槽式预埋组件研究现状与工程应用[J]. 低温建筑技术, 2017, 39(2): 43-45.
LI Shiping. Research status and engineering application of slot embedded parts[J]. Journal of Low Temperature Architecture Technology, 2017, 39(2): 43-45.
[3]舒赣平, 王元清, 袁焕鑫, 等. 《不锈钢结构技术规程》的编制及内容简介[J]. 工业建筑, 2015, 45(12): 1-6.
SHU Ganping, WANG Yuanqing, YUAN Huanxin, et al. Introduction to the establishment background and content of technical specification for stainless steel structures[J]. Journal of Industrial Construction, 2015, 45(12): 1-6.
[4]郑宝锋, 吴步宸, 张奎,等. 不锈钢圆管T形、Y形相贯节点支管受拉承载力研究[J]. 西安建筑科技大学学报(自然科学版), 2022, 54(4): 508-516.
ZHENG Baofeng, WU Buchen, ZHANG Kui, et al. Investigations on capacity of stainless steel T. and Y-joints in circular hollow sections with axial tension in brace[J]. J. of Xi′an Univ. of Arch. & Tech. (Natural Science Edition), 2022, 54(4): 508-516.
[5]GEDGE G. Structural uses of stainless steel—buildings and civil engineering [J]. Journal of constructional steel research, 2008, 64(11): 1194-1198.
[6]MAHRENHOLTZ C, SHARMA A. Qualification and design of anchor channels with channel bolts according to the new EN 1992-4 and ACI 318[J]. Structural Concrete, 2020, 21(1):94-106.
[7]CEN/TC 250 Structural Eurocodes. Design of fastenings for use in concrete-part 4/3: Anchor channels. CEN/TS 1992-4-3: 2009[S]. UK: CEN, 2009.
[8]ACI Committee 318. Building code requirements for structural concrete. ICCES AC 318-20147[S]. Farmington Hills: American Concrete Institute, 2014.
[9]CATTANEO S, CRESPI P, BONATI A, et al. Tensile behavior of different anchor channel connections[J]. Journal of Building Engineering, 2022, 45:103438.
[10]ABOUHAMDAH I S, AIO M A, BALUCH M H, et al. Structural behavior of cast‐in C‐channel anchors in precast concrete under uniaxial tension[J]. Structural Concrete, 2018, 19(4): 1157-1173.
[11]WANG D, WU D, HE S, et al. Behavior of post-installed large-diameter anchors in concrete foundations[J]. Construction and Building Materials, 2015, 95: 124-132.
[12]SHIN J, KIM J H, CHANG H J. Anchor plate effect on the breakout capacity in tension for thinwalled concrete panels[J]. Engineering Structures, 2016, 106(JAN.1): 147-153.
[13]DELHOMME F, ROURE T, ARRIETA B, et al. Static and cyclic pullout behavior of cast-in-place headed and bonded anchors with large embedment depths in cracked concrete[J]. Nuclear Engineering & Design, 2015, 287:139-150.
[14]NILFOROUSH R, NILSSON M, ELFGREN L. Experimental evaluation of tensile behaviour of single cast-in-place anchor bolts in plain and steel fibre-reinforced normal- and high-strength concrete[J].Engineering Structures, 2017, 147(sep.15): 195-206.
[15]徐淑美, 周德源, 毕大勇. 预埋式槽型锚轨抗拔性能的试验研究[J]. 结构工程师, 2010,26(5):111-116.
XU Shumei, ZHOU Deyuan, BI Dayong. Test study on tensile behavior of cast-in channels[J]. Journal of Structural Engineers, 2010, 26(5): 111-116.
[16]李智明. 电气化铁路接触网隧道内预埋槽道理论和试验研究[D]. 武汉: 华中科技大学, 2013.
LI Zhiming. Theoretical and experimental study on embedded channel of electric railway′s contact net in tunnel[D]. Wuhan: Huazhong University of Science and Technology, 2013.
[17]张世卓, 周德源, 付宗超, 等. 预埋式槽型锚轨抗拔及抗剪性能试验研究[J]. 结构工程师, 2015, 31(1): 127-131.
ZHANG Shizhuo, ZHOU Deyuan, FU Zongchao, et al. Test study on tensile and shear behavior of cast-in channels[J]. Journal of Structural Engineers, 2015, 31(1): 127-131.
[18]国家市场监督管理总局, 中国国家标准化管理委员会. 预埋槽道型钢: GB/T 37613—2019[S]. 北京:中国标准出版社, 2019.
State Administration for Market Regulation, Standardization Administration of the People′s Republic of China.Embedded channel steel: GB/T 37613—2019[S]. Beijing: Standards Press of China, 2019.
[19]国家认证认可监督管理委员会. 槽式预埋组件系统应用评价技术规范: RB/T 059—2020[S]. 北京:国家认证认可监督管理委员会, 2020.
National Certification and Accreditation Administration. Technical specifications for application assessment of anchor channels system: RB/T 059—2020[S]. Beijing: Standards Press of China, 2020.
[20]国家市场监督管理总局, 国家标准化管理委员会. 金属材料拉伸试验第1部分:室温试验方法: GB/T 228.1—2021[S]. 北京:中国标准出版社, 2021.
State Administration for Market Regulation, Standardization Administration of the People′s Republic of China. Metallicmaterialstensile testingpart 1:method of test at room temperature: GB/T 228.1—2021[S]. Beijing: Standards Press of China, 2021.
[21]中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 不锈钢棒: GB/T 1220—2007[S]. 北京:中国标准出版社,2007.
General Administration of Quality Supervision, Inspection and Quarantine of the People′s Republic of China, Standardization Administration of the People′s Republic of China. Code for stainless steel bars: GB/T 1220—2007[S]. Beijing: Standards Press of China, 2007.
[22]聂建国, 王宇航. ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J]. 工程力学, 2013, 30(4): 59-67.
NIE Jianguo, WANG Yuhang. Comparison study of constitutive model of concrete in ABAQUS for static analysis of structures[J]. Journal of Engineering Mechanics, 2013, 30(4): 59-67.
[23]中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 混凝土结构设计规范: GB 50010—2010\[S\].北京:中国建筑工业出版社, 2010.
Ministry of Housing and Urban-Rural Development of the People′s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People′s Republic of China. Code for design of concrete structures: GB 50010—2010\[S\]. Beijing: China Architecture &Building Press, 2010.
[24]郑宝锋, 顾悦言, 王嘉昌, 等. 不锈钢板摩擦面抗滑移系数试验研究[J]. 建筑结构学报, 2021, 42(12): 154-161.
ZHENG Baofeng, GU Yueyan, WANG Jiachang, et al. Experiment al study on slip factor of stainless steel faying surface[J]. Journal of Building Structures, 2021, 42(12): 154-161.
[25]ZHONG T, WANG Z B, YU Q. Finite element modelling of concrete-filled steel stub columns under axial compression[J]. Journal of Constructional Steel Research, 2013, 89: 121-131.
[25]冯鹏, 强翰霖, 叶列平. 材料,构件,结构的"屈服点"定义与讨论[J]. 工程力学, 2017, 34(3): 36-46.
FENGPeng, QIANG Hanlin, YE Lieping. Discussion and definition on yield points of materials, members and structures[J]. Journal of Engineering Mechanics, 2017, 34(3): 36-46.

相似文献/References:

[1]郑宝锋,吴步宸,张 奎,等.不锈钢圆管T形、Y形相贯节点支管受拉承载力研究[J].西安建筑科技大学学报(自然科学版),2022,54(04):508.[doi:10.15986/j.1006-7930.2022.04.005]
 ZHENG Baofeng,WU Buchen,ZHANG Kui,et al.Investigations on capacity of stainless steel T-and Y-joints in circular hollow sections with axial tension in brace[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2022,54(02):508.[doi:10.15986/j.1006-7930.2022.04.005]

备注/Memo

备注/Memo:
收稿日期:2023-02-20 修回日期:2023-03-23
基金项目:上海睿中实业股份公司项目(20210367)
第一作者:蔡远征(1999—),男,硕士,主要从事钢结构及不锈钢结构研究.E-mail:cyz19990402123@163.com
通信作者:张浩(1993—),男,博士,讲师,主要从事新型韧性钢结构体系抗震性能与设计理论研究.E-mail:zhanghao0219@xauat.edu.cn
更新日期/Last Update: 2024-06-24