[1]王烁焱,尹海国,邓鑫,等.综合管廊电缆舱基于射流风机的局部通风方法研究[J].西安建筑科技大学学报(自然科学版),2024,56(02):268-275.[doi:10.15986/j.1006-7930.2024.02.013]
 WANG Shuoyan,YIN Haiguo,DENG Xin,et al.Study on local ventilation method of cable compartment in utility tunnel based on jet fan[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(02):268-275.[doi:10.15986/j.1006-7930.2024.02.013]
点击复制

综合管廊电缆舱基于射流风机的局部通风方法研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
56
期数:
2024年02期
页码:
268-275
栏目:
出版日期:
2024-04-28

文章信息/Info

Title:
Study on local ventilation method of cable compartment in utility tunnel based on jet fan
文章编号:
1006-7930(2024)02-0268-08
作者:
王烁焱1尹海国1邓鑫2康云飞1
(1.西安建筑科技大学 建筑设备科学与工程学院,陕西 西安 710055;2.西安西热锅炉环保工程有限公司,陕西 西安 710061)
Author(s):
WANG Shuoyan1 YIN Haiguo1 DENG Xin2 KANG Yunfei1
(1.School of Building Services Science and Engineering, Xi′an Univ. of Arch. & Tech., Xi′an 710055,China;2.Xi′an West Heat Boiler Environmental Protection Engineering Co., Ltd., Xi′an 710061, China)
关键词:
地下管廊射流风机局部通风防火门数值模拟
Keywords:
utility tunnel jet fan local ventilation fire compartment numerical simulation
分类号:
TU990.3;TU994;TU962
DOI:
10.15986/j.1006-7930.2024.02.013
文献标志码:
A
摘要:
地下综合管廊长建设里程需求,廊内增设防火门使其电缆舱内的通风散热问题变得十分严峻.长度越长,管廊温度会逐渐升高,防火门增加会在管廊角落等狭小空间形成高温聚集区,均会阻碍管廊散热.采用局部通风的手段,目的是以较小的风量排除温度异常点,降低管廊全局通风换气量.运用数值模拟结合实验验证的手段对常规电缆舱与局部通风电缆舱在不同边界条件下进行比较,分析了局部通风策略的降温规律.结果表明:在同一总风量比例下增加换气次数可以强化风机控制区域的换热效果,且由于管廊总风量会与风机局部风量相互影响,一味增加总风量比例并不能明显改善管廊内温度分布.利用局部通风方法,电缆舱内降温幅度进一步增大,在局部区域会比常规电缆舱温度低258 ℃.局部通风方法能以较小的风量冷量达到与常规工况相似的降温效果,具备一定的节能优势.
Abstract:
The long construction mileage demand of the utility tunnel, and the addition of fire compartments in the tunnel makes the ventilation and heat dissipation problem in the cable compartment very serious. The longer the length, the temperature of the tunnel will gradually rise, and the increase of the fire door will form a high temperature gathering area in a small space such as the corner of the tunnel, which will hinder the heat dissipation of the utility tunnel. The purpose of local ventilation is to eliminate temperature anomalies with a small air volume and reduce the overall ventilation volume of the utility tunnel. In this paper, numerical simulation combined with experimental verification is used to compare the conventional cable compartments with the local ventilation cable compartments under different boundary conditions, and the cooling law of local ventilation strategy is analyzed. The results show that increasing the number of air changes under the same total air volume can strengthen the heat dissipation in the fan-controlled area, the total air volume of the tunnel will interact with the local fan air volume, and changing the total air volume does not significantly improve the heat exchange. By using local ventilation methods, the temperature reduction in the cable compartments is further increased, and the temperature in the local area will be 2.58 ℃ lower than that in conventional cable compartments. The local ventilation method can achieve a cooling effect similar to that of conventional working conditions with a small air volume and has certain advantages in energy saving.

参考文献/References:

[1]上海市政工程设计研究总院(集团)有限公司, 同济大学. 城市综合管廊工程技术规范:GB 50838—2015[S].北京:中国计划出版社, 2015:20.

Shanghai Municipal Engineering Design Institute (Group) Co., Tongji University. Technical code for utility tunnel engineering: GB 50838—2015[S]. Beijing:China Planning Press, 2015:20.
[2]孙立, 余斌, 杨恒声. 城市地下综合管廊通风设计探讨[J]. 暖通空调, 2018, 48(8): 94-96.
SUN Li, YU Bing, YANG Hengsheng. Discussion on ventilation design of urban utility tunnel[J]. Heating Ventilating & Air Conditioning, 2018, 48(8): 94-96.
[3]崔国静, 周庆国, 宋战平. 城市地下综合管廊建设与发展探析[J]. 西安建筑科技大学学报(自然科学版), 2020, 52(5): 660-666.
CUI Cuojing, ZHOU Qingguo, SONG Zhanping. Analysis on construction and development of urban utility tunnel[J]. J. of Xi′an Univ. of Arch. & Tech. (Natural Science Edition), 2020, 52(5): 660-666.
[4]鱼晟睿. 地下超长区间隧道取消中间风井的防排烟系统模式研究[J]. 西安建筑科技大学学报(自然科学版), 2021, 53(3): 379-385.
YU Shengrui. Study on the model of smoke prevention and exhaust system without intermediate wind well in the underground extra-long interval tunnel of urban rail transit[J]. J. of Xi′an Univ. of Arch. & Tech. (Natural Science Edition), 2021, 53(3): 379-385.
[5]李哲,高锴,张晨,等.综合管廊电力舱温度场的数值模拟研究[J]. 资源节约与环保, 2019(12): 137-140.
LI Zhe, GAO Kai, ZHANG Chen, et al. Numerical simulation study on the temperature field of electric cabin in utility tunnel[J]. Resources Economization & Environment Protection, 2019(12): 137-140.
[6]周游, 周伟国.综合管廊电缆舱通风数值模拟研究[J]. 建筑热能通风空调, 2016,35(11):29-33,91.
ZHOU You, ZHOU Weiguo. Study on numerical simulation of utility cable tunnel ventilation system[J]. Building Energy & Environment, 2016,35(11):29-33,91.
[7]韦岩, 谢安生, 洪梦华. 综合管廊电缆舱断面形状对通风影响的研究[J]. 施工技术, 2018,47(A4):1436-1439.
WEI Yan, XIE Ansheng, HONG Menghong. Study on the influence of section shape of utility cable tunnel on ventilation[J]. Construction Technology, 2018,47(A4):1436-1439.
[8]杨霁虹. 地下综合管廊电力舱内高温聚集区的通风系统模拟研究[D]. 沈阳:沈阳建筑大学, 2018.
YANG Jihong. Research on ventilation system of high temperature accumulation area in electric cabin of underground integrated pipe gallery[D]. Shenyang: Shenyang Jianzhu University, 2018.
[9]WANG J, LIU X, CHEN S, et al. Reducedscale model study on cable heat dissipation and airflow distribution of power cabins[J]. Applied Thermal Engineering, 2019, 160: 114068.
[10]郭对明, 李国清, 侯杰, 等. 基于FLUENT的深井掘进巷道局部通风参数优化[J]. 黄金科学技术, 2022, 30(5): 753-763.
GUO Duiming, LI Guoqing, HOU Jie, et al. Optimization of local ventilation parameters of deep mine excavation roadway based on FLUENT[J]. Gold Science and Technology, 2022, 30(5): 753-763.
[11]KUSUI A , VILLAESCUSA E , FUNATSU T . Mechanical behaviour of scaled-down unsupported tunnel walls in hard rock under high stress[J]. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research, 2016, 60:30-40.
[12]徐志胜, 陶浩文, 王天雄, 等. 隧道曲率半径对空气射流流场特性及升压效率的影响研究[J].安全与环境学报, 2023,23(2):415-423.
XU Zhisheng, TAO Haowen, WANG Tianxiong, et al. Experimental study on propagation characteristics of the deflagration flame of coal dust/methane /air in constant volume chamber[J]. Journal of Safety and Environment, 2023,23(2):415-423.
[13]王万青. 城市隧道射流风机安装技术[J]. 城市建筑空间, 2022, 29(9): 245-246.
WANG Wanqing. Installation techniques for jet fans in urban tunnels[J]. Urban Architectural Space, 2022, 29(9): 245-246.
[14]李方舰, 李婧, 戎贤,等. 基于FDS的公路隧道火灾可逆射流风机通风疏散研究[J]. 消防科学与技术, 2022,41(8): 1056-1060.
LI Fangjian, LI Jing, RONG Xian, et al. Study on ventilation and evacuation of highway tunnel fire reversible jet fan based on FDS[J]. Fire Science and Technology, 2022,41(8): 1056-1060.
[15]LEE H, KWAK J, CHOI J, et al. A labscale experimental approach to evaluate rheological properties of foam-conditioned soil for EPB shield tunnelling[J]. Tunnelling and Underground Space Technology, 2022, 128: 104667.
[16]JANG Y, KIM J, RHO J, et al. The characteristics of ventilated pool fires of Daegok-Sosa subway lines using Model-Scale tunnels and stations[J]. Tunnelling and Underground Space Technology, 2022, 121:104321.
[17]WANG X, SPEARPOINT M, FLEISCHMANN C. Comparison of results from large-scale and small-scale tunnel experiments[J]. Fire Safety Journal, 2018, 95: 135-144.
[18]LI J, LIU W, LI Y F, et al. Scale modelling experiments on the effect of longitudinal ventilation on fire spread and fire properties in tunnel[J]. Tunnelling and Underground Space Technology, 2022, 130: 104725.
[19]COSTANTINO A, MUSTO M, ROTONDO G, et al. Numerical analysis for reducedscale road tunnel model equipped with axial jet fan ventilation system[J]. Energy Procedia, 2014, 45: 1146-1154.
[20]CHENG Q, LI H, RONG L, et al. Using CFD to assess the influence of ceiling deflector design on airflow distribution in hen house with tunnel ventilation[J]. Computers and Electronics in Agriculture, 2018, 151: 165-174.
[21]DU L, YANG C, DOMINY R, et al. Computational fluid dynamics aided investigation and optimization of a tunnel-ventilated poultry house in China[J]. Computers and Electronics in Agriculture, 2019, 159: 1-15.
[22]YANG S, AI Z, ZHANG C, et al. Study on optimization of tunnel ventilation flow field in long tunnel based on CFD computer simulation technology[J]. Sustainability, 2022, 14(18): 11486.
[23]陆耀庆. 实用供热空调设计手册[M].第二版,北京:中国建筑工业出版社, 2008.
LU Yaoqing. Practical heating and air conditioning design manual[M].2nd ed, Beijing: China Construction Industry Press, 2008.
[24]刘引鸽, 周欢欢, 胡浩楠, 等. 西安地区土壤浅层温度变化特征[J]. 干旱区资源与环境, 2019,33(8):153-159.
LIU Yinge, ZHOU Huanhuan, HU Haonan. Characteristics of shallow soil temperature changes in Xi′an area[J]. Journal of Arid Land Resources and Environment, 2019,33(8):153-159.
[25]张锦鹏. 综合管廊通风换热理论研究[J]. 暖通空调, 2022,52(4):146-151.
ZHANG Jinpeng. Theoretical study on ventilation and heat transfer of utility tunnels[J]. Heating Ventilating & Air Conditioning, 2022,52(4):146-151.

备注/Memo

备注/Memo:
收稿日期:2023-02-17 修回日期:2024-03-17
基金项目:陕西省留学人员科技活动择优资助项目(2022-005);国家重点研发计划项目子课题(2019YFC0605105)
第一作者:王烁焱(1998—),男,博士生,主要从事建筑围护结构热工性能提升研究. E-mail:wangshuoyan@xauat.edu.cn
通信作者:尹海国(1987—),男,博士,教授,主要从事建筑通风空调气流组织、室内空气质量研究. E-mail:yinhaiguo@xauat.edu.cn
更新日期/Last Update: 2024-06-24