[1]刘阳,段中兴,赵明琪.基于非视觉效应的建筑室内人工光环境动态调控方法[J].西安建筑科技大学学报(自然科学版),2024,56(02):301-310.[doi:10.15986/j.1006-7930.2024.02.017]
 LIU Yang,DUAN Zhongxing,ZHAO Mingqi.Dynamic control method for indoor green artificial light environment in buildings[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(02):301-310.[doi:10.15986/j.1006-7930.2024.02.017]
点击复制

基于非视觉效应的建筑室内人工光环境动态调控方法()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
56
期数:
2024年02期
页码:
301-310
栏目:
出版日期:
2024-04-28

文章信息/Info

Title:
Dynamic control method for indoor green artificial light environment in buildings
文章编号:
1006-7930(2024)02-0301-10
作者:
刘阳1段中兴12赵明琪3
(1.西安建筑科技大学 信息与控制工程学院,陕西 西安 710055;2.西安建筑科技大学 绿色建筑全国重点实验室,陕西 西安 710055;3.西安正中德信息科技有限公司,陕西 西安 710061)
Author(s):
LIU Yang1 DUAN Zhongxing12ZHAO Mingqi3
(1. School of Information and Control Engineering, Xi′an Univ. of Arch. & Tech., Xi′an 710055, China; 2.State Key Laboratory of Green Building(XAUAT), Xi′an 710055,China; 3. Xi′an Zhengzhongde Information Technology Co., Ltd., Xi′an 710061,China)
关键词:
光照动态调控人工光环境非视觉效应蚁狮算法
Keywords:
light dynamic controlartificial light environment non-visual effects antlion optimizer
分类号:
TU113.6
DOI:
10.15986/j.1006-7930.2024.02.017
文献标志码:
A
摘要:
以电子信息制造业中的封闭流水线车间作为研究对象,提出了一种基于光非视觉效应及智能优化算法的动态调光方法.首先,基于流水线车间这一建筑室内照明场景,制定了相应动态调光策略,在此基础上结合脉冲宽度调制技术的LED灯具及DIAlux中的光照模拟,建立了光照调控数学模型;其次,为提升蚁狮算法的寻优能力及鲁棒性,提出了基于PWLCM混沌映射、Levy飞行、萤火虫扰动及自适应混合变异机制的改进蚁狮算法,并利用改进蚁狮算法求解光照调控数学模型,实现了光照的最优控制;最后,设计了算法对比实验、光照调控准确度实验及光照模拟实验.实验证明,改进蚁狮算法相较于其他算法寻优能力更强、稳定性更高;动态调光方法可将照度误差控制在5 lux以内,调光准确;动态调光方法在节能的同时有利于缓解工人疲劳.
Abstract:
This article focuses on the closed assembly line workshop in the electronic information manufacturing industry and proposes a dynamic dimming method based on light nonvisual effects and intelligent optimization algorithm to address the shortcomings of high energy consumption and low comfort in the artificial light environment of the workshop. Firstly, based on the interior lighting scene of the assembly line workshop, the corresponding dynamic dimming strategy is developed. On this basis, the mathematical model of light regulation is established by combining LED lamps with pulse width modulation technology and light simulation in DIAlux. Secondly, in order to improve the optimization ability and robustness of the Antlion algorithm, an improved Antlion algorithm based on PWLCM chaotic mapping, Levy flight, firefly disturbance and adaptive hybrid mutation mechanism is proposed, and the improved Antlion algorithm is used to solve the mathematical model of light regulation and achieve the optimal control of light. Finally, the algorithm comparison experiment, illumination control accuracy experiment and illumination simulation experiment are designed. Experimental results show that the improved Antlion algorithm has stronger optimization ability and higher stability than other algorithms. The dynamic dimming method can control the illumination error within 5lux, and the dimming is accurate. The dynamic dimming method can save energy and alleviate worker fatigue at the same time.

参考文献/References:

[1]ONUBOGU N O, CHONG K K, TAN M H. Review of active and passive daylighting technologies for sustainable building[J]. International Journal of Photoenergy, 2021, 2021: 1-29.

[2] 秦新景, 王志胜, 张曼群, 等. 结合日光和占用的动态办公照明系统设计[J]. 激光与光电子学进展, 2023, 60(15): 1522003.
QIN Xinjing, WANG Zhisheng, ZHANG Manqun, et al. Combined with daylight and occupancy dynamic lighting system design[J]. Laser & Optoelectronics Progress, 2023, 60(15): 1522003.
[3]CHEN Z, SIVAPARTHIPAN C B, MUTHU B A.IoT based smart and intelligent smart city energy optimization[J]. Sustainable Energy Technologies and Assessments, 2022, 49: 101724.
[4]SHEN D, NING C, WANG Y, et al. Smart lighting control system based on fusion of monocular depth estimationand multi-object detection[J]. Energy and Buildings, 2022: 112485.
[5]VETTER C, PATTISON P M, HOUSER K, et al. A review of human physiological responses to light: implications for the development of integrative lighting solutions[J]. Leukos, 2022, 18(3): 387-414.
[6]HATTAR S, LIAO H W, TAKAO M, et al. Melanopsincontaining retinal ganglion cells: architecture, projections, and intrinsic photosensitivity[J]. Science, 2002, 295(5557): 1065-1070.
[7]WAHL S,ENGELHARDT M, SCHAUPP P, et al. The inner clock—Blue light sets the human rhythm[J]. Journal of Biophotonics, 2019, 12(12): e201900102.
[8]KOMPIER M E, SMOLDERS K C H J, VAN MARKEN L W D, et al. Effects of light transitions on measures of alertness, arousal and comfort[J]. Physiology & Behavior, 2020, 223: 112999.
[9]SIRAJI M A, SPITSCHAN M, KALAVALLY V, et al. Light exposure behaviors predict mood, memory and sleep quality[J]. Scientific Reports, 2023, 13(1): 12425.
[10]LOK R, WOELDERS T, VAN Koningsveld M J, et al. Bright light decreases peripheral skin temperature in healthy men: a forced desynchrony study under dim and bright light (II)[J]. Journal of Biological Rhythms, 2022, 37(4): 417-428.
[11]TANG L, ZHANG X, ZHOU X, et al. Study of heart rate and blood pressure subject to pulsed LED lighting[J].Leukos, 2022, 18(2): 145-153.
[12]TAO L, JIANG R, ZHANG K, et al. Light therapy in nonseasonal depression: An update metaanalysis[J]. Psychiatry Research, 2020, 291: 113247.
[13]IFDIL I, FADLI R P, AMALIANITA B, et al. Effectiveness of Ifdil perceptual light therapy in reducing posttraumatic stress disorder of Lombok′s earthquake victims[J]. Konselor, 2022, 11(4): 161-168.
[14]冯瑜满, 梁育填. 中国电子信息制造业时空格局演化及影响因素[J]. 热带地理,2022,42(12):1980-1992.
FENG Yuman, LIANG Yutian. The spatiotemporal evolution and influencing factors of electronic information manufacturing industry in China[J]. Tropical Geography, 42 (12): 1980-1992.
[15]张璐. 全人工恒定光环境下流水线工人的疲劳周期研究[D]. 重庆: 重庆大学, 2016: 59-60.
ZHANG Lu. Study on fatigue of pipeline workers under the condition of total artificial constant light[D]. Chongqing: Chongqing University, 2016: 59-60.
[16]BRAINARD G C, Hanifin J P, Greeson J M, et al. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor[J]. Journal of Neuroscience, 2001, 21(16): 6405-6412.
[17]THAPAN K, ARENDT J, SKENE D J. An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans[J]. The Journal of physiology, 2001, 535(1): 261-267.
[18]REA M S,FIGUEIRO M G, BULLOUGH J D, et al. A model of phototransduction by the human circadian system[J]. Brain Research Reviews, 2005, 50(2): 213-228.
[19]REA M S,FIGUEIRO M G, BIERMAN A, et al. Modelling the spectral sensitivity of the human circadian system[J]. Lighting Research & Technology, 2012, 44(4): 386-396.
[20]TRUONG W,ZANDI B, TRINH V Q, et al. Circadian metric-Computation of circadian stimulus using illuminance, correlated colour temperature and colour rendering index[J]. Building and Environment, 2020, 184: 107146.
[21]BAKER A. ANSI C78. 377-201x revision: New nominal CCTs smaller quadrangles and circles[J]. [s.n.][s.l.]2014:.
[22]FIGUEIRO M G, KALSHER M, STEVERSON B C, et al. Circadian-effective light and its impact on alertness in office workers[J]. Lighting Research & Technology, 2019, 51(2): 171-183.
[23]中华人民共和国住房和城乡建设部. 建筑光照设计标准: GB 50034—2013[S]. 北京: 中国建筑工业出版社, 2014.
Ministry of Housing and Urban-Rural Development of the Peoples Republic of China. Standard for lighting design of buildings: GB 50034—2013[S]. Beijing: China Architecture & Building Press, 2014.
[24]刘加平. 建筑物理[M]. 北京:中国建筑工业出版社, 2009: 309-310.
LIU Jiaping. Architecural physics[M]. Beijing: China Building Industry Press, 2009: 309-310.
[25]LI Y, FANG W,GUO B, et al. Diurnal effects of dynamic lighting on alertness, cognition, and mood of mentally fatigued individuals in a daylight deprived environment[J]. Lighting Research & Technology, 2022: 14771535221138589.
[26]NIE J, ZHOU T, CHEN Z, et al. Investigation on entraining and enhancing human circadian rhythm in closed environments using daylightlike LED mixed lighting[J]. Science of The Total Environment, 2020, 732: 139334.
[27]WANG T, LI J, WANG Y, et al. Active interventions of dynamic lighting on human circadian rhythm and sleep quality in confined spaces[J]. Building and Environment, 2022, 226: 109766.
[28]聂靖昕, 陈志忠, 党卫民,等. 动态光环境的构建及其在密闭环境和医院的应用[J]. 照明工程学报, 2023, 34(4): 23-30.
NIE Jingxin, CHEN Zhizhong, DANG Weimin, et al. Building up dynamic light environments and their applications in encloused space and hospital[J]. China Illuminating Engineering Journal, 2023, 34(4): 23-30.
[29]YE M,ZHENG S Q, WANG M L, et al. The effect of dynamic correlated colour temperature changes on alertness and performance[J]. Lighting Research & Technology, 2018, 50(7): 1070-1081.
[30]MUNSAMY A J, MOODLEY M, KHAN Z, et al. Evidence on the effects of digital blue light on the eye: A scoping review[J]. African Vision and Eye Health, 2022, 81(1): 1-9.
[31]田会娟, 柳建新, 洪振, 等. 基于脉冲宽度调制的R/G/B/WW 4色发光二极管调光调色方法[J]. 光学学报, 2018, 38(4): 313-319.
TIAN Huijuan, LIU Jianxin, HONG Zhen, et al. Dimming method for R/G/B/WW light emitting diode based on four channels′ pulse width modulation[J]. Acta Optica Sinica, 2018, 38(4): 313-319.
[32]刘艳峰, 明慧, 罗西, 等. 间歇供暖模式下高校教学建筑多目标排课优化研究[J]. 西安建筑科技大学学报(自然科学版), 2022, 54(5): 710-717.
LIU Yanfeng, MING Hui, LUO Xi, et al. Research on multiobjective course scheduling optimization of college teaching building under intermittent heating mod[J]. J. of Xi′an Univ. of Arch. & Tech. (Natural Science Edition). 2022, 54(5): 710-717.
[33]刘启波, 杨雯婷. 基于气候特征的居住区室外热舒适多目标优化布局研究——以西安地区为例[J]. 西安建筑科技大学学报(自然科学版), 2022, 54(1): 54-60.
LIU Qibo, YANG Wenting. Study on multi-objective optimization layout of outdoor thermal comfort in residential areas based on climate characteristics: Taking Xi′an as an example[J]. J. of Xi′an Univ. of Arch. & Tech. (Natural Science Edition), 2022, 54(1): 54-60.
[34]冯晓东, 撒剑波, 郑亦汶, 等. 基于量子天牛须搜索的张拉整体结构预应力优化研究[J]. 西安建筑科技大学学报(自然科学版), 2023, 55(3): 350-358.
FENG Xiaodong, SA Jianbo, ZHENG Yiwen, et al. Research on prestress optimization of tensegrity structures based on quantum beetle antennae search algorithm[J]. J. of Xi′an Univ. of Arch. & Tech. (Natural Science Edition), 2023,55(3):350-358.
[35]MIRJALILI S. The ant lion optimizer[J]. Advances in Engineering Software, 2015, 83: 80-98.
[36]LU Z. An adaptivedung beetle optimization algorithm with golden sine for optimizing numerical unconstrained problems[J]. Current Journal of Applied Science and Technology, 2024, 43(4): 12-20.
[37]SARAVANAN G, NEELAKANDAN S, EZHUMALAI P, et al. Improved wild horse optimization with levy flight algorithm for effective task scheduling in cloud computing[J]. Journal of Cloud Computing, 2023, 12(1): 1-14.
[38]ZARE M, GHASEMI M, ZAHEDI A, et al. A global best-guided firefly algorithm for engineering problems[J]. Journal of Bionic Engineering, 2023, 20(5): 2359-2388.
[39]YAN R, LIN Y, YU N, et al. A low‐carbon economic dispatch model for electricity market with wind power based on improved antlion optimisation algorithm[J]. CAAI Transactions on Intelligence Technology, 2023, 8(1): 29-39.
[40]DINKAR S K, DEEP K. Oppositionbased antlion optimizer using cauchy distribution and its application to data clustering problem[J]. Neural Computing and Applications, 2020, 32: 6967-6995.

备注/Memo

备注/Memo:
收稿日期:2023-02-22 修回日期:2024-03-28
基金项目:国家自然科学基金项目(51678470)
第一作者: 刘阳(1996—),男,硕士生,主要从事建筑光环境优化控制和智能建筑方面的研究.E-mail: 1786408569@qq.com
通信作者:段中兴(1969—),男,教授,博士生导师,主要从事建筑环境控制与节能和智能控制等方面的研究.E-mail:zhx_duan@163.com
更新日期/Last Update: 2024-06-25