[1]范旭红,章立栋,杨 帆,等.基于BA-Elman算法的预应力钢筋混凝土梁损伤识别研究[J].西安建筑科技大学学报(自然科学版),2023,55(03):332-341.[doi:10.15986/j.1006-7930.2023.03.003 ]
 FAN Xuhong,ZHANG Lidong,YANG Fan,et al.Research on damage identification of prestressed reinforced concrete beams based on BA-Elman algorithm[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(03):332-341.[doi:10.15986/j.1006-7930.2023.03.003 ]
点击复制

基于BA-Elman算法的预应力钢筋混凝土梁损伤识别研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
55
期数:
2023年03期
页码:
332-341
栏目:
出版日期:
2023-06-28

文章信息/Info

Title:
Research on damage identification of prestressed reinforced concrete beams based on BA-Elman algorithm
文章编号:
1006-7930(2023)03-0332-10
作者:
范旭红1章立栋1杨 帆1李 青2郁董凯3
(1.江苏大学 力学与土木工程学院, 江苏 镇江 212013; 2.河南省公路工程局集团 第二公路工程有限公司,河南 郑州 450015; 3.中国葛洲坝集团 第二工程有限公司,四川 成都 610091)
Author(s):
FAN Xuhong1ZHANG Lidong1YANG Fan1LI Qing2YU Dongkai3
(1.College of Mechanics and Civil Engineering, Jiangsu University, Jiangsu Zhenjiang 212013,China; 2.Henan Highway Engineering Bureau Group Second Highway Engineering Co. Ltd., Zhengzhou 450015, China; 3.China Gezhouba Group Second Engineering Co., Ltd., Chengdu 610091, China)
关键词:
声发射 预应力混凝土结构 损伤识别 Elman神经网络 蝙蝠算法
Keywords:
acoustic emission prestressed concrete structure damage identification Elman neural network bat algorithm
分类号:
TU378.2
DOI:
10.15986/j.1006-7930.2023.03.003
文献标志码:
A
摘要:
为了准确识别预应力混凝土结构的损伤程度,制作预应力钢筋混凝土实验梁,进行三点弯曲加载实验,收集损伤全过程声发射(AE)信号.绘制声发射振铃计数与持续时间的特征参数关联分布图,以揭示梁的损伤演化过程.借鉴加卸载响应比理论进一步将梁的损伤破坏过程划分为4个典型阶段.构建Elman神经网络,基于Elman神经网络采用局部搜索算法,难以达到全局最优的缺点,提出用蝙蝠算法(BA)对其进行优化.设计BA-Elman神经网络模型训练识别试验梁各损伤阶段AE信号特征参数数据,准确率达到93%,相较于基础Elman神经网络准确率提高了6%左右.定型BA-Elman网络结构并识别同种工况下的其他梁AE信号,识别准确率达到92%左右.
Abstract:
In order to accurately identify the damage degree of prestressed concrete structure, the prestressed reinforced concrete experimental beam was made, and the three-point bending loading experiment was carried out to collect the acoustic emission( AE )signal of the whole damage process. The correlation distribution diagram of characteristic parameters of acoustic emission ringing count and duration was drawn to reveal the damage evolution process of the beam. According to the load-unload response ratio theory, the damage process of the beam was further divided into four typical stages. The Elman neural network was constructed, but based on the local search algorithm adopted by the Elman neural network, it was difficult to achieve the global optimum, so the bat algorithm( BA )was proposed to optimize it. The BA-Elman neural network model was designed to train and identify the AE signal characteristic parameter data of experimental beam at various damage stages, and the accuracy rate reached 93%, which was about 6% higher than that of the basic Elman neural network. The BA-Elman network structure was established and AE signals of other beams under the same working condition were identified with an accuracy of about 92%.

参考文献/References:

[1]刘岩. 预应力混凝土结构发展综述[J]. 混凝土与水泥制品,2008(3): 52-55.
LIU Yan. Review on the development of prestressed concrete structures[J]. Concrete and Cement products,2008(3): 52-55.
[2]ROBERTS T M,TALEBZADEH M. Acoustic emission monitoring of fatigue crack propagation[J]. Journal of Constructional Steel Research, 2003, 59(6): 695-712.
[3]MACHORRO-LOPEZ J M, HERNANDEZ-FIGUEROA J A, CARRION-VIRAMONTES F J, et al. Analysis of acoustic emission signals processed with wavelet transform for structural damage detection in concrete beams[J]. Mathematics, 2023, 11(3): 719.
[4]ZHANG F, YANG Y, NAAKTGEBOREN M, et al. Probability density field of acoustic emission events: Damage identification in concrete structures[J]. Construction and Building Materials, 2022, 327: 126984.
[5]陈忠购. 基于声发射技术的钢筋混凝土损伤识别与劣化评价[D]. 杭州:浙江大学, 2018.
CHEN Zhonggou. Damage identification and deterioration evaluation of reinforced concrete based on acoustic emission technology[D]. Hangzhou: Zhejiang University, 2018.
[6]赵云鹏. 基于动力和声学特性的混凝土简支梁桥损伤识别方法研究[D]. 哈尔滨: 东北林业大学,2019.
ZHAO Yunpeng. Research on damage identification method of concrete simply supported beam bridge based on dynamic and acoustic characteristics[D]. Harbin: Northeast Forestry University, 2019
[7]DAS K, BEHERA R N. A survey on machine learning: concept, algorithms and applications[J]. International Journal of Innovative Research in Computer and Communication Engineering, 2017, 5(2): 1301-1309.
[8]THIRUMALAISELVI A, SASMAL S. Pattern recognition enabled acoustic emission signatures for crack characterization during damage progression in large concrete structures[J]. Applied Acoustics, 2021, 175: 107797.
[9]MORFIDIS K, KOSTINAKIS K. Approaches to the rapid seismic damage prediction of R/C buildings using artificial neural networks[J]. Engineering Structures, 2018, 165: 120-141.
[10]苏三庆,韦璐茜,王威,等.基于支持向量机的钢结构隐性损伤磁记忆识别研究[J]. 西安建筑科技大学学报(自然科学版), 2019,51(1): 1-6.
SU Sanqing, WEI Luxi, WANG Wei, et al. Research on hidden damage magnetic memory recognition of steel structure based on support vector machine[J]. J. of Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2019,51(1): 1-6
[11]崔凤坤,杜岳涛,徐岳,等. 基于混合算法的大跨度钢管混凝土拱桥正常使用可靠度评估[J]. 西安建筑科技大学学报(自然科学版), 2016,48(6): 874-880.
CUI Fengkun, DU Yuetao, XU Yue, et al. Reliability evaluation of long span concrete filled steel tubular arch bridge based on hybrid algorithm[J]. J. of Xi'an Univ. of Arch. & Tech.(Natural Science Editim), 2016,48(6): 874-880.
[12]李舵, 董超群, 司品超, 等. 神经网络验证和测试技术研究综述[J]. 计算机工程与应用, 2021, 57(22): 53-67.
LI Zhu, DONG Chaoqun, SI Pinchao, et al. Review of neural network verification and testing techniques[J]. Computer Engineering and Applications, 2021, 57(22): 53-67.
[13]沈功田,耿荣生,刘时风. 声发射信号的参数分析方法[J]. 无损检测,2002(2): 72-77.
SHEN Gongtian, GENG Rongsheng, LIU Shifeng. Parameter analysis method of acoustic emission signal[J]. Nondestructive Testing,2002(2): 72-77.
[14]周俊临. 自适应自组织映射网络在模式识别中的应用研究[D]. 成都:电子科技大学, 2005.
ZHOU Junlin. Application of adaptive self-organizing mapping network in pattern recognition[D]. Chengdu: University of Electronic Science and Technology, 2005.
[15]于江,皮滟杰,秦拥军. 循环载荷下再生混凝土损伤声发射特性[J]. 材料导报, 2021,35(13): 13011-13017.
YU Jiang, PI Yanjie, QIN Yongjun. Acoustic emission characteristics of recycled concrete damage under cyclic loading[J]. Materials Review, 2021,35(13): 13011-13017.
[16]DING S, ZHANG Y, CHEN J, et al. Research on using genetic algorithms to optimize Elman neural networks[J]. Neural Computing and Applications, 2013, 23(2): 293-297.
[17]JIA W, ZHAO D, ZHENG Y, et al. A novel optimized GA-Elman neural network algorithm[J]. Neural Computing and Applications, 2019, 31(2): 449-459.
[18]YANG Xinshe. A new metaheuristic bat-inspired algorithm[C]//Nature Inspired Cooperative Strategies for Optimization(NICSO 2010). Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 65-7.
[19]玄登影,王福林,高敏慧,等. 一种改进适应度函数的遗传算法[J]. 数学的实践与认识, 2015,45(16): 232-238.
XUAN Dengying, WANG Fulin, GAO Minhui, et al. A genetic algorithm for improving fitness function[J]. Practice and Understanding of Mathematics, 2015,45(16): 232-238.
[20]李晓峰,徐玖平,王荫清,等. BP人工神经网络自适应学习算法的建立及其应用[J]. 系统工程理论与实践, 2004(5): 1-8.
LI Xiaofeng, XU Jiuping, WANG Yinqing, et al. Establishment and application of BP artificial neural network adaptive learning algorithm[J]. System Engineering Theory and Practice, 2004(5): 1-8.
[21]余华鸿,周凤艳,陈毛毛. 基于机器学习的KDD-CUP99网络入侵检测数据集的分析[J]. 计算机工程与科学, 2019,41(S1): 91-97.
YU Huahong, ZHOU Fengyan, CHEN Maomao. Analysis of kdd-cup99 network intrusion detection data set based on machine learning[J]. Computer Engineering and Science, 2019,41(S1): 91-97.
[22]HAY A M. The derivation of global estimates from a confusion matrix[J]. International Journal of Remote Sensing, 1988, 9(8): 1395-1398.
[23]TAFIADIS D,CHRONOPOULOS S K, KOSMA E I, et al. Using receiver operating characteristic curve to define the cutoff points of voice handicap index applied to young adult male smokers[J]. Journal of Voice, 2018, 32(4): 443-448.
[24]乔宁. 多元逻辑回归在实时竞价中的应用研究[D].天津:河北工业大学, 2015.
QIAO Ning. Application of multiple logistic regression in real-time bidding[D]. Tianjin: Hebei University of Technology, 2015.

相似文献/References:

[1]门进杰,朱 乐,李 欢,等.钢筋混凝土梁声发射检测参数设置和受力特征试验研究[J].西安建筑科技大学学报(自然科学版),2015,47(06):793.[doi:10.15986/j.1006-7930.2015.06. 005]
 MEN Jinjie,ZHU Le,LI Huan,et al.Experimental research on the acoustic emission detecting parameters and mechanical behaviors for reinforced concrete structure[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2015,47(03):793.[doi:10.15986/j.1006-7930.2015.06. 005]

备注/Memo

备注/Memo:
收稿日期:2022-02-22修回日期:2023-05-03
基金项目:国家自然科学基金青年项目(52108148)
第一作者:范旭红(1969—),女,硕士,副教授,主要从事防灾与减灾等方面的研究.E-mail:55358319@qq.com
更新日期/Last Update: 2023-06-28