参考文献/References:
[1]刘岩. 预应力混凝土结构发展综述[J]. 混凝土与水泥制品,2008(3): 52-55.
LIU Yan. Review on the development of prestressed concrete structures[J]. Concrete and Cement products,2008(3): 52-55.
[2]ROBERTS T M,TALEBZADEH M. Acoustic emission monitoring of fatigue crack propagation[J]. Journal of Constructional Steel Research, 2003, 59(6): 695-712.
[3]MACHORRO-LOPEZ J M, HERNANDEZ-FIGUEROA J A, CARRION-VIRAMONTES F J, et al. Analysis of acoustic emission signals processed with wavelet transform for structural damage detection in concrete beams[J]. Mathematics, 2023, 11(3): 719.
[4]ZHANG F, YANG Y, NAAKTGEBOREN M, et al. Probability density field of acoustic emission events: Damage identification in concrete structures[J]. Construction and Building Materials, 2022, 327: 126984.
[5]陈忠购. 基于声发射技术的钢筋混凝土损伤识别与劣化评价[D]. 杭州:浙江大学, 2018.
CHEN Zhonggou. Damage identification and deterioration evaluation of reinforced concrete based on acoustic emission technology[D]. Hangzhou: Zhejiang University, 2018.
[6]赵云鹏. 基于动力和声学特性的混凝土简支梁桥损伤识别方法研究[D]. 哈尔滨: 东北林业大学,2019.
ZHAO Yunpeng. Research on damage identification method of concrete simply supported beam bridge based on dynamic and acoustic characteristics[D]. Harbin: Northeast Forestry University, 2019
[7]DAS K, BEHERA R N. A survey on machine learning: concept, algorithms and applications[J]. International Journal of Innovative Research in Computer and Communication Engineering, 2017, 5(2): 1301-1309.
[8]THIRUMALAISELVI A, SASMAL S. Pattern recognition enabled acoustic emission signatures for crack characterization during damage progression in large concrete structures[J]. Applied Acoustics, 2021, 175: 107797.
[9]MORFIDIS K, KOSTINAKIS K. Approaches to the rapid seismic damage prediction of R/C buildings using artificial neural networks[J]. Engineering Structures, 2018, 165: 120-141.
[10]苏三庆,韦璐茜,王威,等.基于支持向量机的钢结构隐性损伤磁记忆识别研究[J]. 西安建筑科技大学学报(自然科学版), 2019,51(1): 1-6.
SU Sanqing, WEI Luxi, WANG Wei, et al. Research on hidden damage magnetic memory recognition of steel structure based on support vector machine[J]. J. of Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2019,51(1): 1-6
[11]崔凤坤,杜岳涛,徐岳,等. 基于混合算法的大跨度钢管混凝土拱桥正常使用可靠度评估[J]. 西安建筑科技大学学报(自然科学版), 2016,48(6): 874-880.
CUI Fengkun, DU Yuetao, XU Yue, et al. Reliability evaluation of long span concrete filled steel tubular arch bridge based on hybrid algorithm[J]. J. of Xi'an Univ. of Arch. & Tech.(Natural Science Editim), 2016,48(6): 874-880.
[12]李舵, 董超群, 司品超, 等. 神经网络验证和测试技术研究综述[J]. 计算机工程与应用, 2021, 57(22): 53-67.
LI Zhu, DONG Chaoqun, SI Pinchao, et al. Review of neural network verification and testing techniques[J]. Computer Engineering and Applications, 2021, 57(22): 53-67.
[13]沈功田,耿荣生,刘时风. 声发射信号的参数分析方法[J]. 无损检测,2002(2): 72-77.
SHEN Gongtian, GENG Rongsheng, LIU Shifeng. Parameter analysis method of acoustic emission signal[J]. Nondestructive Testing,2002(2): 72-77.
[14]周俊临. 自适应自组织映射网络在模式识别中的应用研究[D]. 成都:电子科技大学, 2005.
ZHOU Junlin. Application of adaptive self-organizing mapping network in pattern recognition[D]. Chengdu: University of Electronic Science and Technology, 2005.
[15]于江,皮滟杰,秦拥军. 循环载荷下再生混凝土损伤声发射特性[J]. 材料导报, 2021,35(13): 13011-13017.
YU Jiang, PI Yanjie, QIN Yongjun. Acoustic emission characteristics of recycled concrete damage under cyclic loading[J]. Materials Review, 2021,35(13): 13011-13017.
[16]DING S, ZHANG Y, CHEN J, et al. Research on using genetic algorithms to optimize Elman neural networks[J]. Neural Computing and Applications, 2013, 23(2): 293-297.
[17]JIA W, ZHAO D, ZHENG Y, et al. A novel optimized GA-Elman neural network algorithm[J]. Neural Computing and Applications, 2019, 31(2): 449-459.
[18]YANG Xinshe. A new metaheuristic bat-inspired algorithm[C]//Nature Inspired Cooperative Strategies for Optimization(NICSO 2010). Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 65-7.
[19]玄登影,王福林,高敏慧,等. 一种改进适应度函数的遗传算法[J]. 数学的实践与认识, 2015,45(16): 232-238.
XUAN Dengying, WANG Fulin, GAO Minhui, et al. A genetic algorithm for improving fitness function[J]. Practice and Understanding of Mathematics, 2015,45(16): 232-238.
[20]李晓峰,徐玖平,王荫清,等. BP人工神经网络自适应学习算法的建立及其应用[J]. 系统工程理论与实践, 2004(5): 1-8.
LI Xiaofeng, XU Jiuping, WANG Yinqing, et al. Establishment and application of BP artificial neural network adaptive learning algorithm[J]. System Engineering Theory and Practice, 2004(5): 1-8.
[21]余华鸿,周凤艳,陈毛毛. 基于机器学习的KDD-CUP99网络入侵检测数据集的分析[J]. 计算机工程与科学, 2019,41(S1): 91-97.
YU Huahong, ZHOU Fengyan, CHEN Maomao. Analysis of kdd-cup99 network intrusion detection data set based on machine learning[J]. Computer Engineering and Science, 2019,41(S1): 91-97.
[22]HAY A M. The derivation of global estimates from a confusion matrix[J]. International Journal of Remote Sensing, 1988, 9(8): 1395-1398.
[23]TAFIADIS D,CHRONOPOULOS S K, KOSMA E I, et al. Using receiver operating characteristic curve to define the cutoff points of voice handicap index applied to young adult male smokers[J]. Journal of Voice, 2018, 32(4): 443-448.
[24]乔宁. 多元逻辑回归在实时竞价中的应用研究[D].天津:河北工业大学, 2015.
QIAO Ning. Application of multiple logistic regression in real-time bidding[D]. Tianjin: Hebei University of Technology, 2015.