[1]陈梦圆,贾俊峰,程寿山,等.不锈钢筋-FRP筋混合配筋预制节段桥墩抗震性能研究[J].西安建筑科技大学学报(自然科学版),2023,55(03):368-379.[doi:10.15986/j.1006-7930.2023.03.007 ]
 CHEN Mengyuan,JIA Junfeng,CHENG Shoushan,et al.Study on seismic performance of precast segmental pier columns with stainless steel and FRP reinforcements[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(03):368-379.[doi:10.15986/j.1006-7930.2023.03.007 ]
点击复制

不锈钢筋-FRP筋混合配筋预制节段桥墩抗震性能研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
55
期数:
2023年03期
页码:
368-379
栏目:
出版日期:
2023-06-28

文章信息/Info

Title:
Study on seismic performance of precast segmental pier columns with stainless steel and FRP reinforcements
文章编号:
1006-7930(2023)03-0368-12
作者:
陈梦圆1贾俊峰1程寿山2周述美3庞 伟4
(1.北京工业大学 城市与工程安全减灾教育部重点实验室, 北京 100124; 2.旧桥检测与加固交通行业重点实验室(北京), 北京 100088; 3.中国建筑第八工程局有限公司, 上海 200112; 4.中国市政工程西北设计研究院有限公司, 甘肃 兰州 730099)
Author(s):
CHEN Mengyuan1 JIA Junfeng1 CHENG Shoushan2 ZHOU Shumei3 PANG Wei4
(1.Key Laboratory of Urban and Engineering Safety and Disaster Reduction, Ministry of Education, Beijing University of Technology, Beijing 100124,China; 2.Key Laboratory of Bridge Detection and Reinforcement Technology of the Ministry of Communications(Beijing), Beijing 100088,China; 3.China Construction Eighth Engineering Bureau Co., Ltd., Shanghai 200112, China; 4.China Municipal Engineering Northwest design and Research Institute Co., Ltd., Lanzhou 730099,China)
关键词:
预制节段拼装桥墩 GFRP筋 不锈钢筋 无粘结段长度 抗震性能
Keywords:
precast segmental pier column GFRP reinforcement stainless steel reinforcement length of unbonded section seismic performance
分类号:
TU443.2
DOI:
10.15986/j.1006-7930.2023.03.007
文献标志码:
A
摘要:
为解决沿海环境中钢筋易锈蚀的问题,结合节段拼装桥墩的快速建造技术,设计了一种配置2304不锈钢筋和GFRP筋的混合配筋形式的节段预制拼装桥墩.通过ABAQUS有限元软件建立了混合配筋桥墩的数值仿真模型,分析了其在低周往复荷载作用下的滞回性能,并通过与试验结果对比验证了有限元模型的正确性.采用该有限元模型进一步探究了GFRP筋的无粘结段长度比例、轴压比、剪跨比对节段拼装桥墩抗震性能的影响.数值计算结果表明:随着GFRP筋无粘结段长度减小,节段拼装桥墩的承载力提高.无粘结段长度越长,GFRP筋的局部应力越小,位移延性越好,但是墩柱的耗能变小.建议GFRP筋的无粘结段长度在40%~80%之间,以保证桥墩具备良好的抗震性能,避免GFRP筋应力集中发生突然断裂.通过增加轴压比,试件承载力增幅不明显; 试件剪跨比从4.5增大为9.5,试件水平承载力降低63%.为后续后张预应力混合配筋桥墩的抗震性能试验研究奠定基础.
Abstract:
In order to solve the problem that reinforcement is easy to rust in coastal environment, combined with the rapid construction technology of segmental assembled pier, a segmental prefabricated assembled pier with 2304 stainless steel reinforcement and GFRP reinforcement is designed. The numerical simulation model of hybrid reinforced pier is established by ABAQUS finite element software, and its hysteretic performance under low cyclic load is analyzed. The finite element model, the correctness of which is verified by comparing with the test results, is used to further explore the effects of unbonded section length, axial compression ratio and shear span ratio of GFRP reinforcement on the seismic performance of segmental assembled piers. The numerical results show that the bearing capacity of segmental assembled piers increases with the decrease of the length of unbonded GFRP reinforcement. The longer the length of unbonded section, the smaller the local stress of GFRP reinforcement and the better the displacement ductility, but the energy consumption of pier column becomes smaller. It is suggested that the length of unbonded section of GFRP reinforcement should be between 40%~80%, so as to ensure that the pier has good seismic performance and avoid sudden fracture due to stress concentration of GFRP reinforcement. By increasing the axial compression ratio, the increase of the bearing capacity of the specimen is not obvious; the shear span ratio of the specimen increases from 4.5 to 9.5, and the horizontal bearing capacity of the specimen decreases by 63%. This study lays a foundation for the subsequent experimental study on the seismic performance of post tensioned prestressed composite reinforced piers.

参考文献/References:

[1]邵旭东,邱明红.基于UHPC材料的高性能装配式桥梁结构研发[J]. 西安建筑科技大学学报(自然科学版),2019,51(2):160-167.
SHAO Xudong, QIU Minghong. Research of high performance fabricated bridge structures based on UHPC[J]. J.Xi'an Univ. of Arch.& Tech.(Natural Science Edition). 2019,51(2):160-167.
[2]王景全, 王震, 高玉峰, 等. 预制桥墩体系抗震性能研究进展:新材料、新理念、新应用[J]. 工程力学,2019,36(3):1-23.
WANG Jingquan, WANG Zhen, GAO Yufeng, et al. Review on aseismic behavior of precast piers new material, new concept and new application[J]. Engineering Mechanics, 2019, 36(3): 1-23.
[3]BRENES F J. Anchorage of grouted vertical duct connections for precast bent caps[D]. Austin: The University of Texas at Austin, 2005.
[4]KHALEGHI B, SCHULTZ E, SEGUIRANT S, et al. Accelerated bridge construction in Washington State: From research to practice[J]. PCI Journal, 2012, 57(4): 34-49.
[5]童申家,黄勇,李红涛,等. 除冰盐环境下在役RC桥墩时效地震易损性研究[J]. 西安建筑科技大学学报(自然科学版), 2020, 52(3):315-320.
TONG Shenjia, HUANG Yong, LI Hongtao, et al. Study on aging seismic vulnerability of in-service RC bridge piers in deicing salt environment[J]. J.Xi'an Univ. of Arch.& Tech.(Natural Science Edition), 2020, 52(3):315-320.
[6]CAPRILI S, SALVATORE W. Cyclic behavior of uncorroded and corroded steel reinforcing bars[J]. Construction and Building Materials, 2015, 76: 168-86.
[7]JIA Junfeng, ZHAO Lingyun, WU Suiwen, et al. Experimental investigation on the seismic performance of low-level corroded and retrofitted reinforced concrete bridge columns with CFRP fabric[J]. Engineering Structures, 2020, 209: 110225.
[8]MOHAMED H M, AFIFIi M Z, BENMOKRANE B. Performance evaluation of concrete columns reinforced longitudinally with FRP bars and confined with FRP hoops and spirals under axial load[J]. Journal of Bridge Engineering, 2014, 19(7): 04014020.
[9]ABDELAZIM W, MOHAMED H M, BENMOKRANE B, et al. Strength of bridge high-strength concrete slender compression members reinforced with GFRP bars and spirals: Experiments and Second-Order analysis[J]. Journal of Bridge Engineering. 2020, 25(9): 04020066.
[10]邓宗才, 高磊, 王献云. GFRP筋混凝土柱抗震性能试验[J]. 中国公路学报, 2017, 30(10): 53-61.
DENG Zongcai, GAO Lei, WANG Xianyun. Experiment on seismic performance of concrete columns reinforced with GFRP bars[J]. China Journal of Highway and Transport, 2017, 30(10): 53-61.
[11]江世永,余晗健,姚未来,等.全CFRP筋混凝土柱低周反复荷载试验研究[J]. 四川建筑科学研究,2017, 43(3): 99-104.
JIANGE Shiyong, YU Hanjian, YAO Weilai, et al. Experimental study on concrete columns reinforced with CFRP bars under low cyclical loading[J]. Sichuan Building Science, 2017, 43(3): 99-104.
[12]王震宇,王旭阳,蔡忠奎. 复材筋与钢筋混合配筋混凝土柱的抗震性能分析[J]. 工业建筑, 2016, 46(5): 1-6,101.
WANG Zhenyu, WANG Xuyang, CAI Zhongkui. Seismic performance analysis of columns reinforced by steel and composite reinforcements[J]. Industrial Construction, 2016, 46(5): 1-6,101.
[13]CAI Zhongkui, WANG Zhenyu, YANG T Y. Cyclic load tests on precast segmental bridge columns with both steel and basalt FRP reinforcement[J]. Journal of Composites for Construction, 2019, 23(3): 04019014.
[14]CAI Zhongkui, WANG Zhenyu, YANG T Y. Experimental testing and modeling of precast segmental bridge columns with hybrid normal-and high-strength steel rebars[J]. Construction and Building Materials, 2018, 166: 945-955.
[15]王富羚,王玉田,姜福香,等.循环荷载作用下CFRP-混凝土界面粘结-滑移关系研究[J]. 西安建筑科技大学学报(自然科学版), 2021, 53(2): 223-228,253.
WANG Fuling, WANG Yutian, JIANG Fuxiang, et al. Study on the bond-slip relationship of CFRP-concrete interface under cyclic loading[J]. J.Xi'an Univ. of Arch.& Tech.(Natural Science Edition), 2021, 53(2): 223-228,253.
[16]IBRAHIM A M A, MAHMY M F M, WU Zhishen. 3D finite element modeling of bond-controlled behavior of steel and basalt FRP-reinforced concrete square bridge columns under lateral loading[J]. Composite Structures, 2016, 143: 33-52
[17]IBRAHIM A M A, WU Zhishen, FAHMY M F M, et al. Experimental study on cyclic response of concrete bridge columns reinforced by steel and basalt FRP reinforcements[J]. Journal of Composites for Construction, 2016, 20(3): 04015062.
[18]邓宗才,高磊,王献云. 配置GFRP筋的混凝土矩形截面柱抗震试验研究[J]. 应用基础与工程科学学报, 2019, 27(5): 1065-1076.
DENG Zongcai, GAO Lei, WANG Xianyun Experiments on seismic behavior of rectangular glass fiber-reinforced polymer-reinforced concrete columns[J]. Journal of Basic Science and Engineering, 2019, 27(5): 1065-1076.
[19]IBRAHIM A I, WU Gang, SUN Zeyang. Experimental study of cyclic behavior of concrete bridge columns reinforced by steel basalt-fiber composite bars and hybrid stirrups[J]. Journal of Composites for Construction, 2017, 21(2): 4016091.
[20]WU Gang, WU Zhishen, LUO Yunbiao, et al. Mechanical properties of steel-FRP composite bar under uniaxial and cyclic tensile loads[J]. Journal of Materials in Civil Engineering, 2010, 22(10): 1056-1066
[21]WU Gang, SUN Zeyang, WU Zhishen, et al. Mechanical properties of steel-FRP composite bars(SFCBs)and performance of SFCB reinforced concrete structures[J]. Advances in Structural Engineering, 2012, 15(4): 625-635
[22]SUN Zeyang, WU Gang, WU Zhishen, et al. Nonlinear behavior and simulation of concrete columns reinforced by steel-FRP composite bars[J]. Journal of Bridge Engineering, 2014, 19(2): 220-234.
[23]张颖. 不锈钢钢筋混凝土板疲劳性能试验研究[D]. 广州:广东工业大学, 2014.
ZHANG Ying. Experiment research on the fatigue behavior of stainless steel reinforced concrete slabs[D]. Guangzhou: Guangdong University of Technology, 2014.
[24]赵勇, 张琛, 王晓锋. 配置高延性不锈钢钢筋混凝土柱抗震性能试验研究[J]. 同济大学学报(自然科学版), 2020, 48(6): 803-810.
ZHAO Yong, ZHANG Chen, WANG Xiaofeng. Experimental research on seismic behaviors of concrete columns with high-ductility stainless steel reinforcements[J]. Journal of Tongji University(Natural Science)2020, 48(6): 803-810.
[25]张国学,赵峰,张志浩等. 不锈钢钢筋混凝土梁抗震性能试验研究[J]. 中国铁道科学, 2010, 31(5): 35-40.
ZHANG Guoxue, ZHAO Feng, ZHANG Zhihao, et al. Experimental study on the seismic performance of the stainless steel reinforced concrete beams[J]. China Railway Science, 2010, 31(5):35-40.
[26]中交公路规划院有限公司.公路钢筋混凝土及预应力混凝土桥涵设计规范:JTG 3362—2018[S].北京: 人民交通出版社股份有限公司,2018.
CCCC HIGHWAY CONSULTANTS CO.,LTD. Specifications for Design of Highway Reinforced Concrete and Prestressed Concrete Bridges and Culverts:JTG 3362—2018[S]. Beijing: People's Communications Publishing House Co., Ltd,2018.
[27]刘月丹. 混合配筋预制节段拼装桥墩抗震性能拟静力试验研究[D]. 北京:北京工业大学,2019.
LIU Yuedan. Experimental study on seismic behavior of prefabricated segmental composite pier with mixed reinforcement[D]. Beijing: Beijing University of technology, 2019.
[28]LI Chao, BI Kaiming, HAO Hong. Seismic performances of precast segmental column under bidirectional earthquake motions: Shake table test and numerical evaluation[J]. Engineering Structures, 2019, 187(15): 314-328.
[29]OU Yuchen, CHIEWANICHAKORN M, AREF A J, et al. Seismic performance of segmental precast unbonded posttensioned concrete bridge columns[J]. Journal of Structural Engineering, 2007, 133(11): 1636-1647.
[30]LI Chao, HAO Hong, BI Kaiming. Numerical study on the seismic performance of precast segmental concrete columns under cyclic loading[J]. Engineering Structures, 2017, 148(1): 373-386.

备注/Memo

备注/Memo:
收稿日期:2022-01-17修回日期:2023-05-11
基金项目:国家国际科技合作专项基金资助(2019YFE0119800),北京市自然科学基金项目(8202002),旧桥检测与加固交通行业重点实验室(北京)开放课题基金资助(2020-JQKFKT-7)
第一作者:陈梦圆(1997—),女,硕士生,主要从事桥梁抗震方面的研究. E-mail:cmy971024@163.com
通信作者:贾俊峰(1982—),男,博士,教授,主要从事桥梁抗震方面的研究. E-mail:jiajunfeng@bjut.edu.cn
更新日期/Last Update: 2023-06-28