[1]鹿 婷,金祖权,陈兆毅,等.杂散电流与氯盐作用下埋地混凝土中钢筋锈蚀研究[J].西安建筑科技大学学报(自然科学版),2023,55(04):484-491.[doi:10.15986/j.1006-7930.2023.04.002 ]
 LU Ting,JIN Zuquan,CHEN Zhaoyi,et al.Study on corrosion of reinforcement in buried concrete under the action of stray current and chlorine salt[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(04):484-491.[doi:10.15986/j.1006-7930.2023.04.002 ]
点击复制

杂散电流与氯盐作用下埋地混凝土中钢筋锈蚀研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
55
期数:
2023年04期
页码:
484-491
栏目:
出版日期:
2023-10-26

文章信息/Info

Title:
Study on corrosion of reinforcement in buried concrete under the action of stray current and chlorine salt
文章编号:
1006-7930(2023)04-0484-08
作者:
鹿 婷1金祖权1陈兆毅2李祥翔1胡 源1杜占涛1
(1.青岛理工大学 土木工程学院,山东 青岛 266520; 2.中国铁路设计集团有限公司,天津 300000)
Author(s):
LU Ting1 JIN Zuquan1 CHEN Zhaoyi2 LI Xiangxiang1 HU Yuan1 DU Zhantao1
(1.School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, China; 2.National Railway Design Group Co. Ltd., Tianjin 300000, China)
关键词:
钢筋混凝土 杂散电流 氯离子 盐渍土 腐蚀
Keywords:
reinforced concrete stray current chloride ions salt soil corrosion
分类号:
TU528
DOI:
10.15986/j.1006-7930.2023.04.002
文献标志码:
A
摘要:
沿海地铁轨道钢筋混凝土结构因电流渗漏会处于杂散电流和氯离子共存环境中,导致轨道混凝土结构快速失效.本文在真实土壤中掺加1.5%氯盐构建盐渍土环境,采用10~30 V恒压直流电模拟杂散电流,研究钢筋混凝土在杂散电流与氯盐复合下的腐蚀损伤、锈蚀产物特性及其锈胀应力等.结果表明:混凝土中近保护层钢筋首先锈蚀、锈蚀面钢筋呈现部分点蚀并伴随有非均匀锈蚀现象,但随着腐蚀进行、钢筋上表面发生大面积锈蚀并向远保护层发展; 钢筋锈蚀产物主要以亚铁氧化物为主、并伴随有氯化亚铁存在; 钢筋锈蚀产生的膨胀应力大约在2~3 MPa; 土壤氯离子含量增加、杂散电流密度增大会加速钢筋锈蚀和混凝土开裂,锈胀应力提高50%左右; 杂散电流和氯离子共同作用下钢筋锈蚀程度远大于单一因素的影响.
Abstract:
The reinforced concrete structure of coastal subway track will be in the coexistence environment of stray current and chloride ions due to current leakage, which leads to the rapid failure of track concrete structure. In this paper, 1.5% chloride salt is mixed with real soil to construct saline soil environment, and 10-30 V constant voltage DC is used to simulate stray currents to study the corrosion damage, corrosion product characteristics and its corrosion-induced expansive pressure of reinforced concrete under the compound of stray currents and chloride salt. The results indicate that the reinforcement near the protective layer in concrete first rusts, and the reinforcement on the rusted surface shows partial pitting corrosion accompanied by non-uniform corrosion. However, as the corrosion progresses, a large area of corrosion occurs on the upper surface of the reinforcement and develops towards the far protective layer. The corrosion products of reinforcement are mainly ferrous oxides, accompanied by ferrous chloride, and the expansion stress generated by the corrosion of reinforcement is about 2-3 MPa. The increase of soil chloride ion content and stray current density will accelerate the corrosion of reinforcement and concrete cracking, and the corrosion expansion stress will increase by about 50%. The corrosion degree of reinforcement under the combined action of stray current and chloride ions is much greater than that of a single factor.

参考文献/References:

[1]李哲,金祖权,邵爽爽,等. 海洋环境下混凝土中钢筋锈蚀机理及监测技术概述[J]. 材料导报, 2018, 32(23): 4170-4181.
LI Zhe, JIN Zuquan, SHAO Shuangshuang, et al. A review on reinforcement corrosion mechanics and monitoring techniques in concrete in marine environment[J]. Materials Reports, 2018, 32(23): 4170-4181.
[2]干伟忠,高明赞. 杂散电流对钢筋混凝土结构耐久性的影响[J]. 混凝土, 2009, 236(6): 21-24, 45.
GAN Weizhong, GAO Mingzan. Effects of stray current on reinforced concrete durability[J]. Concrete, 2009, 236(6): 21-24, 45.
[3]朱瑶宏,邹玉生,耿健,等. 杂散电流对氯离子在混凝土内部迁移过程的影响[J]. 武汉理工大学学报, 2012, 34(7): 32-36.
ZHU Yaohong, ZOU Yusheng, GENG Jian, et al. Influence of stray current on chloride ion migrates in concrete[J]. Journal of Wuhan University of Technology, 2012, 34(7): 32-36.
[4]庄华夏,蔡跃波,陈迅捷,等. 盐冻对钢筋混凝土杂散电流腐蚀的影响研究[J]. 混凝土与水泥制品, 2023, No.325(5): 12-16.
ZHUANG Huaxia, CAI Yuebo, CHEN Xunjie, et al. Effect of salt-freezing on stray current corrosion of reinforced concrete[J]. China Concrete and Cement Products, 2023, No.325(5): 12-16.
[5]Luca Bertolini, Maddalena Carsana, Pietro Pedeferri. Corrosion behaviour of steel in concrete in the presence of stray current[J]. Corrosion Science, 2006, 49(3): 1056-1068.
[6]耿健,丁庆军,孙家瑛,等. 杂散电流影响下氯离子向混凝土内部的传输特征[J]. 建筑材料学报, 2010, 13(1): 121-124.
GENG Jian, DING Qingjun, SUN Jiaying, et al. Transport characteristics of chloride ion in concrete with stray current[J]. Journal of Building Materials, 2010, 13(1): 121-124.
[7]张二猛. 弯曲荷载及杂散电流与腐蚀介质复合作用下地铁混凝土的抗侵蚀性能[D]. 广州:华南理工大学, 2011.
ZHANG Ermeng. The anti-erosion performance of metro concrete under the effect of bending load and stray current coupled with corrosive medium[D]. Guangzhou: South China University of Technology, 2011.
[8]吴泉水. 杂散电流与氯离子耦合作用下混凝土中钢筋锈蚀研究[D]. 南昌:华东交通大学, 2011.
WU Quanshui. Research of steel corrosion in concrete under the coupling actions of stray currents and chloride ion[D]. Nanchang: East China Jiaotong University, 2011.
[9]王凯,赵杰,彭文瑞,等. 杂散电流对氯离子向混凝土中传输性能的影响[J]. 建筑科学, 2015, 31(11): 79-85.
WANG Kai, ZHAO Jie, PENG Wenrui, et al. Influence of stray current on chloride ion transports properties in concrete[J]. Building Science, 2015, 31(11): 79-85.
[10]陈梦成,韩英俊,谢力,等. 杂散电流与氯离子耦合作用下钢筋锈蚀[J]. 沈阳建筑大学学报(自然科学版), 2015, 31(2): 244-250.
CHEN Mengcheng, HAN Yingjun, XIE Li, et al. Study on rebar corrosion under coupling action of stray current and chloride ion[J]. Journal of Shenyang Jianzhu University(Natural Science), 2015, 31(2): 244-250.
[11]周晓军,高波. 地铁迷流对钢筋混凝土中钢筋腐蚀的试验研究[J]. 铁道学报, 1999(5): 99-105.
ZHOU Xiaojun, GAO Bo. Experimental study on metro stray current corrosion of rebars in reinforced concrete[J]. Journal of the China Railway Society, 1999(5): 99-105.
[12]张威. 钢筋混凝土结构轨道交通杂散电流腐蚀损伤机理[D]. 哈尔滨:哈尔滨工业大学, 2017.
ZHANG Wei. Corrosion damage mechamism of reinforced concrete structures caused by the stray current of rail transit system[D]. Harbin: Harbin Institute of Technology, 2017.
[13]郭振华. 地铁杂散电流场数值模拟及其对混凝土中钢筋锈蚀作用的试验研究[D]. 深圳:深圳大学, 2019.
GUO Zhenhua. Numerical simulation of stray current field in subway and experimental study on corrosion of steel bars in concrete[D]. Shenzhen: Shenzhen University, 2019.
[14]陈迅捷,欧阳幼玲,钱文勋,等. 不同环境中杂散电流对钢筋混凝土腐蚀影响[J]. 水利水运工程学报, 2014(2): 33-37.
CHEN Xunjie, OUYANG Youling, QIAN Wenxun, et al. Influences of stray current on corrosion behaviors of reinforcing steel bar in concrete placed in different environments[J]. Hydro-Science and Engineering, 2014(2): 33-37.
[15]陆晨浩,农兴中,范进,等. 杂散电流作用下钢筋混凝土腐蚀电流时变规律研究[J]. 混凝土, 2021, 375(1): 13-16.
LU Chenhao, NONG Xingzhong, FAN Jin, et al. Study on timevarying regularity of reinforced concrete corrosion current under stray current[J]. Concrete, 2021, 375(1): 13-16.
[16]丁庆军,吴雄,耿健. 抑制杂散电流对水泥石固化氯离子能力的影响[J]. 建筑材料学报, 2008(1): 80-83.
DING Qingjun, WU Xiong, GENG Jian. Experimental study of binding capability of chloride ion under stray current in cement hardened paste admixed with fly ash[J]. Journal of Building Materials, 2008(1): 80-83.
[17]杜应吉,李元婷. 活性掺合料对地铁混凝土杂散电流的抑制作用[J]. 混凝土, 2005(6): 77-79.
DU Yingji, LI Yuanting. The restraining function of active aggregate on stray electricity current in subway concrete[J]. Concrete, 2005(6): 77-79.
[18]秦一琦,金祖权,李师财,等. 砂浆内钢筋锈胀应力监测与数值模拟研究[J]. 土木与环境工程学报(中英文), 2023, 45(2): 179-186.
QIN Yiqi, JIN Zuquan, LI Shicai, et al. Experimental and numerical simulation study on corrosion evolution of steel bar in mortar[J]. Journal of Civil and Environmental Engineering, 2023, 45(2): 179-186.

相似文献/References:

[1]杨 勇,张雪昭,焦卫丽.焊接箍筋混凝土框架柱抗震性能试验研究[J].西安建筑科技大学学报(自然科学版),2014,46(03):323.[doi:10.15986/j.1006-7930.2014.03.004]
 YANG Yong,ZHANG Xuezhao,JIAO Weili.Experimental study on seismic performance of reinforced concrete frame columns with welding stirrups[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2014,46(04):323.[doi:10.15986/j.1006-7930.2014.03.004]
[2]程凯凯,姚继涛.钢筋混凝土预制构件裂缝宽度检验的可靠性分析[J].西安建筑科技大学学报(自然科学版),2014,46(03):376.[doi:10.15986/j.1006-7930.2014.03.012]
 CHENG Kaikai,YAO Jitao.Reliability analysis of crack width inspection for prefabricated members of reinforced concrete[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2014,46(04):376.[doi:10.15986/j.1006-7930.2014.03.012]
[3]栾 娟,郝宪武,段瑞芳.基于吊拉协同方法的钢筋混凝土系杆拱加固效果研究[J].西安建筑科技大学学报(自然科学版),2018,50(02):214.[doi:10.15986/j.1006-7930.2018.02.010]
 LUAN Juan,HAO Xianwu,DUAN Ruifang.Reinforcement effect of reinforced concrete tied arch based on[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2018,50(04):214.[doi:10.15986/j.1006-7930.2018.02.010]
[4]祝明桥,颜泽峰,陈 林,等.面向双层交通的混凝土箱梁桥弹性试验研究[J].西安建筑科技大学学报(自然科学版),2019,51(02):198.[doi:10.15986/j.1006-7930.2019.02.007]
 ZHU Mingqiao,YAN Zefeng,CHEN Lin,et al.Experimental study of the elastic behavior of a novel RC box girder[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(04):198.[doi:10.15986/j.1006-7930.2019.02.007]
[5]王 朋,于 彬,史庆轩,等.钢筋混凝土板柱节点冲切破坏模型及承载力分析[J].西安建筑科技大学学报(自然科学版),2020,52(06):852.[doi:10.15986/j.1006-7930.2020.06.011 ]
 WANG Peng,YU Bin,SHI Qingxuan,et al.Punching failure models and bearing capacity analysis of reinforced concrete slab-column connections[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(04):852.[doi:10.15986/j.1006-7930.2020.06.011 ]
[6]董 征,付传清,陆晨涛,等.基于钢筋加速非均匀锈蚀的混凝土保护层胀裂预测[J].西安建筑科技大学学报(自然科学版),2023,55(04):598.[doi:10.15986/j.1006-7930.2023.04.016 ]
 DONG Zheng,FU Chuanqing,LU Chentao,et al.Prediction of concrete cover cracking based on accelerated non-uniform corrosion of reinforcing steel bars[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(04):598.[doi:10.15986/j.1006-7930.2023.04.016 ]

备注/Memo

备注/Memo:
收稿日期:2022-11-11修回日期:2023-07-14
基金项目:国家铁路集团有限公司科技研究开发计划基金项目(N2020G055)和交通运输行业重点科技基金项目(2021-ZD1-012)
第一作者:鹿 婷(1997—),女,硕士,主要从事海洋环境混凝土耐久性研究.E-mail:lt15194270700@163.com
通信作者:金祖权(1977—),男,教授,博士生导师,主要从事海洋环境混凝土耐久性研究.E-mail:jinzuquan@126.com
更新日期/Last Update: 2023-08-28