[1]蔡渝新,刘清风.混凝土拌合物稳定性及其对工程结构耐久性影响的研究进展[J].西安建筑科技大学学报(自然科学版),2023,55(04):492-503.[doi:10.15986/j.1006-7930.2023.04.003 ]
 CAI Yuxin,LIU Qingfeng.Research progress on the stability of concrete mixtures and its influence on the durability of engineering structures[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(04):492-503.[doi:10.15986/j.1006-7930.2023.04.003 ]
点击复制

混凝土拌合物稳定性及其对工程结构耐久性影响的研究进展()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
55
期数:
2023年04期
页码:
492-503
栏目:
出版日期:
2023-10-26

文章信息/Info

Title:
Research progress on the stability of concrete mixtures and its influence on the durability of engineering structures
文章编号:
1006-7930(2023)04-0492-12
作者:
蔡渝新12刘清风12
(1.上海交通大学 海洋工程国家重点实验室,上海 200240; 2.上海市公共建筑和基础设施数字化运维重点实验室,上海 200240)
Author(s):
CAI Yuxin12 LIU Qingfeng12
(1.State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 2.Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure, Shanghai 200240, China)
关键词:
稳定性 评价方法 影响因素 钢筋混凝土 耐久性
Keywords:
stability evaluation methods influence factors reinforced concrete durability
分类号:
TU528
DOI:
10.15986/j.1006-7930.2023.04.003
文献标志码:
A
摘要:
在实际工程中,要求新拌混凝土大流动性的同时,还需充分考虑其稳定性以保证工程质量.本文对混凝土拌合物稳定性及其对工程结构耐久性影响的研究现状进行了综述,详细介绍了关于评价混凝土拌合物稳定性的试验和数值模拟方法; 综合分析了骨料、掺合料等原材料性能,水胶比、减水剂用量等配合比设计参数,以及现场施工因素对稳定性的影响; 系统探讨了混凝土拌合物的稳定性对其硬化后混凝土保护层渗透性、钢筋-混凝土界面缺陷和钢筋锈蚀起始时间的作用机理.
Abstract:
In practical engineering, the stability of fresh concrete should be fully considered to ensure the project quality while requiring the high flowability. In this paper, the current status of relevant studies on the stability of concrete mixtures and its influence on the durability of engineering structures is reviewed. Firstly, the experimental and numerical simulation methods for evaluating the stability of concrete mixtures are introduced in detail. After that, the effects of the properties of raw materials such as aggregates and admixtures, the mix proportion parameters such as water-to-binder ratio and water-reducing agent dosage, and the on-site construction factors on stability are comprehensively analyzed. Finally, the influence mechanisms of the stability of concrete mixtures on the permeability of concrete cover, the interfacial defect between steel bars and concrete, and the initiation time of reinforcement corrosion after concrete hardening are systematically discussed.

参考文献/References:

[1]ROUSSEL N. A theoretical frame to study stability of fresh concrete[J]. Materials and Structures, 2006, 39(1): 81-91.
[2]SHEN L, STRUBLE L, LANGE D. Modeling static segregation of self-consolidating concrete[J]. ACI Materials Journal, 2009, 106(4): 367-374.
[3]SHEN L, STRUBLE L, LANGE D. Modeling dynamic segregation of self-consolidating concrete[J]. ACI Materials Journal, 2009, 106(4): 375-380.
[4]KOVLER K, ROUSSEL N. Properties of fresh and hardened concrete[J]. Cement and Concrete Research, 2011, 41(7): 775-792.
[5]CAI Y, LIU Q F. Stability of fresh concrete and its effect on late-age durability of reinforced concrete: An overview[J]. Journal of Building Engineering, 2023, 107701.
[6]MEGID W A, KHAYAT K H. Effect of concrete rheological properties on quality of formed surfaces cast with self-consolidating concrete and superworkable concrete[J]. Cement and Concrete Composites, 2018, 93: 75-84.
[7]GAO X, ZHANG J, SU Y. Influence of vibration-induced segregation on mechanical property and chloride ion permeability of concrete with variable rheological performance[J]. Construction and Building Materials, 2019, 194: 32-41.
[8]PANESAR D K, SHINDMAN B. The effect of segregation on transport and durability properties of self consolidating concrete[J]. Cement and Concrete Research, 2012, 42: 252-264.
[9]ASTM.Standard test method for static segregation of self-consolidating concrete using column technique: ASTM C1610/C1610M-21[S]. West Conshohocken. USA: Annual Book of ASTM, 2021.
[10]NILI M, RAZMARA M. Proposing a new apparatus to assess the properties of self-consolidating concrete[J]. Journal of Testing and Evaluation, 2020, 48(4): 3188-3201.
[11]MAHOUTIAN M, YADEGARAN I, LIBRE N A, et al. Comparison between different test methods used for evaluation of self-compacting concrete's stability[C]//Proceedings of the Fifth international RILEM symposium on self-compacting concrete. Ghent, Belgium: RJLEM publications SARL, 2007: 103-109.
[12]SHEN L, STRUBLE L, LANGE D. New method for measuring static segregation of self-consolidating concrete[J]. Journal of Testing and Evaluation, 2007, 35(3): 303-309.
[13]SHEN L, JOVEIN H B, LI M. Measuring static stability and robustness of self-consolidating concrete using modified segregation probe[J]. Construction and Building Materials, 2014, 70: 210-216.
[14]EL-CHABIB H, NEHDI M. Effect of mixture design parameters on segregation of self-consolidating concrete[J]. ACI Materials Journal, 2006, 103(5): 374-383.
[15]KHAYAT K H, VANHOVE Y, PAVATE T V, et al. Multi-electrode conductivity method to evaluate static stability of flowable and self-consolidating concrete[J]. ACI Materials Journal, 2007, 104(4): 424-433.
[16]MESBAH H A, YAHIA A, KHAYAT K H. Electrical conductivity method to assess static stability of self-consolidating concrete[J]. Cement and Concrete Research, 2011, 41(5): 451-458.
[17]NILI M, RAZMARA M, NILI M, et al. Proposing new methods to appraise segregation resistance of self-consolidating concrete based on electrical resistivity[J]. Construction and Building Materials, 2017, 146: 192-198.
[18]罗大明, 张桂涛. 基于贝叶斯理论的氯离子扩散系数计算模型[J]. 西安建筑科技大学学报(自然科学版), 2019, 51(5): 710-716.
LUO Daming, ZHANG Guitao. Calculation model of chloride diffusion coefficient based on Bayesian theory[J]. J.of Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2019, 51(5): 710-716.
[19]石春香, 石权, 庄仁杰. 多尺度再生随机骨料混凝土材料及梁试件分析[J]. 西安建筑科技大学学报(自然科学版), 2022, 54(2): 237-241.
SHI Chunxiang, SHI Quan, ZHUANG Renjie. Analysis of multi-scale recycled random aggregate concrete materials and beam specimens[J]. J. of Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2022, 54(2): 237-241.
[20]童良玉, 刘清风. 纤维增强混凝土氯离子扩散系数的多尺度预测模型[J]. 复合材料学报, 2023, 39(11): 5181-5191.
TONG Liangyu, LIU Qingfeng. Multi-scale prediction model of chloride diffusivity of fiber reinforced concrete[J]. Acta Materiae Compositae Sinica, 2023, 39(11): 5181-5191.
[21]周宇, 刘清风. 三维混凝土细观模型构建与骨料形态对氯离子扩散影响的数值研究[J]. 材料导报, 2023, 37(24): 22070243.
ZHOU Yu, LIU Qingfeng. 3-D concrete mesoscopic modelling and numerical study on the influence of aggregate morphology on chloride diffusion[J]. Materials Reports, 2023, 37(24): 22070243.
[22]胡哲, 刘清风. 荷载作用下开裂混凝土中多离子传输的数值研究[J]. 材料导报, 2023, 37(9): 21120077.
HU Zhe, LIU Qingfeng. Numerical study of multi-species transport in cracked concrete under external load[J]. Materials Reports, 2023, 37(9): 21120077.
[23]童良玉, 刘清风. 考虑多尺度非均质性的混凝土传输性能预测模型[J]. 建筑材料学报, 2023, 26(10):1-10.
TONG Liangyu, LIU Qingfeng. Modelling of chloride transport in concrete by considering the multi-scale heterogeneous characteristics[J]. Journal of Building Materials, 2023, 26(10):1-10.
[24]CAI Y, LIU Q F, YU L, et al. An experimental and numerical investigation of coarse aggregate settlement in fresh concrete under vibration[J]. Cement and Concrete Composites, 2021, 122: 104153.
[25]XU Z, LI Z. Numerical method for predicting flow and segregation behaviors of fresh concrete[J]. Cement and Concrete Composites, 2021, 123: 104150.
[26]NAVARRETE I, LOPEZ M. Understanding the relationship between the segregation of concrete and coarse aggregate density and size[J]. Construction and Building Materials, 2017, 149: 741-748.
[27]CHIA K S, KHO C C, ZHANG M H. Stability of fresh lightweight aggregate concrete under vibration[J]. ACI Materials Journal, 2005, 102(5): 347-354.
[28]SAFAWI M I, IWAKI I, MIURA T. The segregation tendency in the vibration of high fluidity concrete[J]. Cement and Concrete Research, 2004, 34(2): 219-226.
[29]ESMAEILKHANIAN B, DIEDERICH P, KHAYAT K H, et al. Influence of particle lattice effect on stability of suspensions: application to self-consolidating concrete[J]. Materials and Structures, 2017, 50(1): 39.
[30]胡力群, 夏明达, 夏爽, 等. 卸料角度和粒径分布对级配碎石粗集料均匀性影响研究[J]. 西安建筑科技大学学报(自然科学版), 2019, 51(6): 797-803,824.
HU Liqun, XIA Mingda, XIA Shuang, et al. Study on effect of unloading angles and particle size distributional width on the uniformity of coarse aggregate in graded gravel[J]. J. of Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2019, 51(6): 797-803,824.
[31]MOSTOFINEJAD D, REISI M. A new DEM-based method to predict packing density of coarse aggregates considering their grading and shapes[J]. Construction and Building Materials, 2012, 35: 414-420.
[32]AÏSSOUN B M, HWANG S, KHAYAT K H. Influence of aggregate characteristics on workability of superworkable concrete[J]. Materials and Structures, 2016, 49: 597-609.
[33]GHODDOUSI P, JAVID A A S, SOBHANI J. Effects of particle packing density on the stability and rheology of self-consolidating concrete containing mineral admixtures[J]. Construction and Building Materials, 2014, 53: 102-109.
[34]ISMAIL M K, HASSAN A A A. Influence of mixture composition and type of cementitious materials on enhancing the fresh properties and stability of self-consolidating rubberized concrete[J]. Journal of Materials in Civil Engineering, 2016, 28(1): 04015075.
[35]NAVARRETE I, KURAMA Y, ESCALONA N, et al. Effect of supplementary cementitious materials on viscosity of cement-based pastes[J]. Cement and Concrete Research, 2022, 151: 106635.
[36]MAHDIKHANI M, RAMEZANIANPOUR A A. New methods development for evaluation rheological properties of self-consolidating mortars[J]. Construction and Building Materials, 2015, 75: 136-143.
[37]AMINI K, MEHDIPOUR I, HWANG S D, et al. Effect of binder composition on time-dependent stability and robustness characteristics of self-consolidating mortar subjected to prolonged agitation[J]. Construction and Building Materials, 2016, 112: 654-665.
[38]LIBRE N A, KHOSHNAZAR R, SHEKARCHI M. Relationship between fluidity and stability of self-consolidating mortar incorporating chemical and mineral admixtures[J]. Construction and Building Materials, 2010, 24(7): 1262-1271.
[39]ESMAEILKHANIAN B, KHAYAT K H, YAHIA A, et al. Effects of mix design parameters and rheological properties on dynamic stability of self-consolidating concrete[J]. Cement and Concrete Composites, 2014, 54: 21-28.
[40]WONG H H C, KWAN A K H. Packing density of cementitious materials: part 1-measurement using a wet packing method[J]. Materials and Structures, 2008, 41(4): 689-701.
[41]CHIA K S, ZHANG M. Effect of chemical admixtures on rheological parameters and stability of fresh lightweight aggregate concrete[J]. Magazine of Concrete Research, 2004, 56(8): 465-473.
[42]李国新, 郭艳, 史琛, 等. 高效减水剂与缓凝剂复掺对三元胶凝体系流动性和强度的影响[J]. 西安建筑科技大学学报(自然科学版), 2014, 46(6): 898-902.
LI Guoxin, GUO Yan, SHI Chen, et al. Effects of β-naphthalenelfonicacid-based superplasticizer and retarder on the fluidity and strength of the ternary cementitious system[J]. J. of Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2014, 46(6): 898-902.
[43]张少杰, 李辉, 陈畅. 化学外加剂对轻质脱硫石膏砌块性能的影响[J]. 西安建筑科技大学学报(自然科学版), 2021, 53(4): 602-610.
ZHANG Shaojie, LI Hui, CHEN Chang. Effect of chemical admixtures on properties of light desulfurized gypsum blocks[J]. J. of Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2021, 53(4): 602-610.
[44]FENEUIL B, PITOIS O, ROUSSEL N. Effect of surfactants on the yield stress of cement paste[J]. Cement and Concrete Research, 2017, 100: 32-39.
[45]MEHDIPOUR I, RAZZAGHI M S, AMINI K, et al. Effect of mineral admixtures on fluidity and stability of self-consolidating mortar subjected to prolonged mixing time[J]. Construction and Building Materials, 2013, 40: 1029-1037.
[46]阎培渝, 黎梦圆, 韩建国, 等. 新拌混凝土可泵性的研究进展[J]. 硅酸盐学报, 2018, 46(2): 239-246.
YAN Peiyu, LI Mengyuan, HAN Jianguo, et al. Recent development on pumpability of fresh concrete[J]. Journal of the Chinese Ceramic Society, 2018, 46(2): 239-246.
[47]CHOI M S, KIM Y J, JANG K P, et al. Effect of the coarse aggregate size on pipe flow of pumped concrete[J]. Construction and Building Materials, 2014, 66: 723-730.
[48]SPANGENBERG J, ROUSSEL N, HATTEL J H, et al. Patterns of gravity induced aggregate migration during casting of fluid concretes[J]. Cement and Concrete Research, 2012, 42(12): 1571-1578.
[49]BANFILL P F G, XU Y, DOMONE P L J. Relationship between the rheology of unvibrated fresh concrete and its flow under vibration in a vertical pipe apparatus[J]. Magazine of Concrete Research, 1999, 51(3): 181-190.
[50]LI J J, TIAN Z H, SUN X, et al. Modeling vibration energy transfer of fresh concrete and energy distribution visualization system[J]. Construction and Building Materials, 2022, 354: 129210.
[51]PETROU M F, HARRIES K A, GADALA-MARIA F, et al. A unique experimental method for monitoring aggregate settlement in concrete[J]. Cement and Concrete Research, 2000, 30(5): 809-816.
[52]SAFAWI M I, IWAKI I, MIURA T. A study on the applicability of vibration in fresh high fluidity concrete[J]. Cement and Concrete Research, 2005, 35(9): 1834-1845.
[53]ZHANG J, GAO X, SU Y. Influence of poker vibration on aggregate settlement in fresh concrete with variable rheological properties[J]. Journal of Materials in Civil Engineering, 2019, 31(7): 04019128.
[54]PETROU M F, WAN B L, GADALA-MARIA F, et al. Influence of mortar rheology on aggregate settlement[J]. ACI Materials Journal, 2000, 97(4): 479-485.
[55]董振平, 牛荻涛, 刘西芳, 等. 一般大气环境下钢筋开始锈蚀时间的计算方法[J]. 西安建筑科技大学学报(自然科学版), 2006, 38(2): 204-209.
DONG Zhenping, NIU Ditao, LIU Xifang, et al. Calculation method of the initial time of steel-bar corrosion under atmospheric environment[J]. J. of Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2006, 38(2): 204-209.
[56]宋华, 牛荻涛. 电化学快速锈蚀与自然环境钢筋锈蚀的相似性分析[J]. 西安建筑科技大学学报(自然科学版), 2009, 41(4): 508-511.
SONG Hua, NIU Ditao. Comparability analysis on corrosion by impressed current technique and corrosion in natural environment[J]. J. of Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2009, 41(4): 508-511.
[57]张成琳, 刘清风. 钢筋混凝土中氯盐和硫酸盐耦合侵蚀研究进展[J]. 材料导报, 2022, 36(1): 69-77.
ZHANG Chenglin, LIU Qingfeng. Coupling erosion of chlorides and sulfates in reinforced concrete: a review[J]. Materials Reports, 2022, 36(1): 69-77.
[58]李林洁, 刘清风. 冻融循环下混凝土内部结冰及氯离子传输规律的数值研究[J]. 硅酸盐学报, 2022, 50(8): 2245-2256.
LI Linjie, LIU Qingfeng. Freezing rate and chloride transport in concrete subjected to freeze-thaw cycles: a numerical study[J]. Journal of the Chinese Ceramic Society, 2022, 50(8): 2245-2256.
[59]蔡渝新, 刘清风. 碱激发混凝土抗氯离子侵蚀性能的数值研究[J]. 建筑材料学报, 2023, 26(6): 596-603,622.
CAI Yuxin, LIU Qingfeng. Numerical estimation on chloride erosion resistance of alkali-activated concrete[J]. Journal of Building Materials, 2023, 26(6): 596-603,622.
[60]LIU Q F, FENG G L, XIA J, et al. Ionic transport features in concrete composites containing various shaped aggregates: a numerical study[J]. Composite Structures, 2018, 183: 371-380.
[61]ABYANEH S D, WONG H S, BUENFELD N R. Modelling the diffusivity of mortar and concrete using a three-dimensional mesostructure with several aggregate shapes[J]. Computational Materials Science, 2013, 78: 63-73.
[62]NIKNEZHAD D, RAGHAVAN B, BERNARD F, et al. Towards a realistic morphological model for the meso-scale mechanical and transport behavior of cementitious composites[J]. Composites Part B: Engineering, 2015, 81: 72-83.
[63]MUSLIM F, WONG H S, CHENG G, et al. Combined effects of vertical spacers and segregation on mass transport properties of reinforced concrete[J]. Materials and Structures, 2020, 53: 151.
[64]CAI Y, ZHANG W, YU L, et al. Characteristics of the steel-concrete interface and their effect on the corrosion of steel bars in concrete[J]. Construction and Building Materials, 2020, 253: 119162.
[65]MOHAMMED T U, HAMADA H, HASNAT A, et al. Corrosion of steel bars in concrete with the variation of microstructure of steel-concrete interface[J]. Journal of Advanced Concrete Technology, 2015, 13(4): 230-240.
[66]TORELLI G, LEES J M. Fresh state stability of vertical layers of concrete[J]. Cement and Concrete Research, 2019, 120: 227-243.
[67]蔡渝新. 钢筋-混凝土界面缺陷特征及其对钢筋腐蚀的影响研究[D]. 重庆: 重庆大学, 2020.
CAI Yuxin. Study on the characteristics of steel-concrete interface defects and their effect on the corrosion of steel bars[D]. Chongqing: Chongqing University, 2020.
[68]ZHANG W, FRANÇOIS R, CAI Y, et al. Influence of artificial cracks and interfacial defects on the corrosion behavior of steel in concrete during corrosion initiation under a chloride environment[J]. Construction and Building Materials, 2020, 253: 119165.
[69]CAI Y, ZHANG W, YANG C, et al. Evaluating the chloride permeability of steel-concrete interface based on concretes of different stability[J]. Structural Concrete, 2021, 22(5): 2636-2649.
[70]ANGST U M, GEIKER M R, ALONSO M C, et al. The effect of the steel-concrete interface on chloride-induced corrosion initiation in concrete: a critical review by RILEM TC 262-SCI[J]. Materials and Structures, 2019, 52(4): 88.
[71]CHEN F, LI C Q, BAJI H, et al. Quantification of steel-concrete interface in reinforced concrete using Backscattered Electron imaging technique[J]. Construction and Building Materials, 2018, 179: 420-429.
[72]SOYLEV T A, FRANÇOIS R. Quality of steel-concrete interface and corrosion of reinforcing steel[J]. Cement and Concrete Research, 2003, 33(9): 1407-1415.
[73]ZHANG R, CASTEL A, FRANÇOIS R. Influence of steel-concrete interface defects owing to the top-bar effect on the chloride-induced corrosion of reinforcement[J]. Magazine of Concrete Research, 2011, 63(10): 773-781.
[74]牛荻涛, 陆炫毅, 苗元耀, 等. 盐雾环境下疲劳损伤混凝土氯离子扩散性能[J]. 西安建筑科技大学学报(自然科学版), 2015, 47(5): 617-620,648.
NIU Ditao, LU Xuanyi, MIAO Yuanyao, et al. Diffusion of chloride ions into fatigue-damaged concrete in salt spray environment[J]. J. of Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2015, 47(5): 617-620,648.
[75]刘勇. 氯盐侵蚀对混凝土微观结构损伤的影响研究[J]. 西安建筑科技大学学报(自然科学版), 2020, 52(3): 390-395.
LIU Yong. Study on the damage characteristics of concrete structures by chloride erosion[J]. J. of Xi'an Univ. of Arch. & Techn.(Natural Science Edition), 2020, 52(3): 390-395.
[76]陈伟康, 刘清风. 干湿交替下混凝土中水分和多离子耦合传输的数值研究[J]. 水利学报, 2021, 52(5): 622-632.
CHEN Weikang, LIU Qingfeng. Moisture and multi-ions transport in concrete under drying-wetting cycles: a numerical study[J]. Journal of Hydraulic Engineering, 2021, 52(5): 622-632.
[77]LIU Q F, CAI Y, Peng H, et al. A numerical study on chloride transport in alkali-activated fly ash/slag concretes[J]. Cement and Concrete Research, 2023, 166: 107094.
[78]LIU Q F, SHEN X H, AVIJA B, et al. Numerical study of interactive ingress of calcium leaching, chloride transport and multi-ions coupling in concrete[J]. Cement and Concrete Research, 2023, 165: 107072.
[79]CAI Y, LIU Q F, MENG Z, et al. Influence of coarse aggregate settlement induced by vibration on long-term chloride transport in concrete: a numerical study[J]. Materials and Structures, 2022, 55(9): 235.
[80]PAGE C L. Initiation of chloride-induced corrosion of steel in concrete: Role of the interfacial zone[J]. Materials and Corrosion, 2009, 60(8): 586-592.
[81]SILVA N. Chloride induced corrosion of reinforcement steel in concrete: Threshold values and ion distributions at the concrete-steel interface[D]. Chalmers University of Technology, Doctoral Thesis, 2013.
[82]YU L, FRANÇOIS R, DANG V H, et al. Development of chloride-induced corrosion in pre-cracked RC beams under sustained loading: Effect of load-induced cracks, concrete cover, and exposure conditions[J]. Cement and Concrete Research, 2015, 67: 246-258.
[83]ZHANG W, FRANÇOIS R, YU L. Influence of load-induced cracks coupled or not with top-casting-induced defects on the corrosion of the longitudinal tensile reinforcement of naturally corroded beams exposed to chloride environment under sustained loading[J]. Cement and Concrete Research, 2020, 129: 105972.
[84]HARTT W H, NAM J. Effect of cement alkalinity on chloride threshold and time-to-corrosion of reinforcing steel in concrete[J]. Corrosion, 2008, 64(8): 671-680.
[85]NAM J, KIM K J, HARTT W H. Effects of cement alkalinity on the time-to-corrosion of reinforcing steel in concrete under chloride exposure[J]. Corrosion Science and Technology, 2004, 3(6): 245-250.

相似文献/References:

[1]宋长华,罗 成,丁 力,等.制冷系统优化及热力学分析[J].西安建筑科技大学学报(自然科学版),2012,44(04):548.[doi:10.15986/j.1006-7930.2012.04.017]
 SONG Chang-hua,LUO Cheng,DING Li,et al.Optimization and thermo-dynamic analysis of the refrigerating system[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2012,44(04):548.[doi:10.15986/j.1006-7930.2012.04.017]
[2]胡庆安,李 轲,凤跃森.π型钢板应用于板梁桥加固的非线性研究[J].西安建筑科技大学学报(自然科学版),2014,46(01):16.[doi:10.15986/j.1006-7930.2014.01.004]
 HU Qingan,LI Ke,FENG Yuesen.Nonlinear research of -type steel used for plate-beam bridge strengthening[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2014,46(04):16.[doi:10.15986/j.1006-7930.2014.01.004]
[3]宋战平、,杨腾添,张丹锋,等.溶洞对隧道(洞)稳定性影响的数值试验及现场监测分析[J].西安建筑科技大学学报(自然科学版),2014,46(04):484.[doi:10.15986/j.1006-7930.2014.04.005]
 SONG Zhanping YANG TengtianZHANG DanfengLI Ning.Experiments and field monitoring and analysis about the impact of existing cave on the stability of the tunnel[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2014,46(04):484.[doi:10.15986/j.1006-7930.2014.04.005]
[4]刘 科,赵 浩.黄土深基坑桩锚联合支护结构变形与稳定性分析[J].西安建筑科技大学学报(自然科学版),2014,46(04):513.[doi:10.15986/j.1006-7930.2014.04.010]
 LIU Ke,ZHAO Hao.Numerical analysis and stability analysis of a commercial plaza excavation engineering foundation in loess area[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2014,46(04):513.[doi:10.15986/j.1006-7930.2014.04.010]
[5]王 威,牛晓波,苏三庆,等.涡流检测用于无粘结预应力钢绞线护套厚度测量的试验研究[J].西安建筑科技大学学报(自然科学版),2016,48(03):340.[doi:10.15986/j.1006-7930.2016.03.006]
 WANG Wei,NIU Xiaobo,SU Sanqing,et al.Experimental research on the eddy current testing method for sheath thickness measurement of unbonded prestressed steel strand[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2016,48(04):340.[doi:10.15986/j.1006-7930.2016.03.006]
[6]唐贞云 郭珺 李振宝.非线性实时动力子结构试验系统稳定性分析[J].西安建筑科技大学学报(自然科学版),2017,49(02):228.[doi:10.15986/j.1003-7930.2017.02.011]
 TANG Zhen yun,GUO Jun,LI Zhen bao.The stability analysis of nonlinear real-time dynamic substructuring system[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2017,49(04):228.[doi:10.15986/j.1003-7930.2017.02.011]
[7]李 峰,华梦城,高 尚. 基于子结构刚度的圆柱面巨型网格结构稳定性研究[J].西安建筑科技大学学报(自然科学版),2018,50(05):668.[doi:10.15986/j.1006-7930.2018.05.008]
 LI FengHUA MengchengGAO Shang.Research on stability property of cylinderical reticulated mega-structure[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2018,50(04):668.[doi:10.15986/j.1006-7930.2018.05.008]

备注/Memo

备注/Memo:
收稿日期:2022-11-01修回日期:2023-07-17
基金项目:国家自然科学优秀青年基金项目(52222805); 上海市自然科学基金项目(22ZR1431400); 上海交通大学深蓝计划基金项目(SL2021MS016)
第一作者:蔡渝新(1994—),男,博士生,主要从事新拌混凝土流变性能、钢筋混凝土结构耐久性、绿色低碳胶凝材料等方向研究.E-mail:yuxin.cai@sjtu.edu.cn
通信作者:刘清风(1986—),男,教授,博士生导师,主要从事钢筋混凝土结构耐久性、多孔介质中多离子传输、细微观尺度数值模拟、电化学修复与防护技术等方向研究.E-mail:liuqf@sjtu.edu.cn
更新日期/Last Update: 2023-08-28