参考文献/References:
[1]ROUSSEL N. A theoretical frame to study stability of fresh concrete[J]. Materials and Structures, 2006, 39(1): 81-91.
[2]SHEN L, STRUBLE L, LANGE D. Modeling static segregation of self-consolidating concrete[J]. ACI Materials Journal, 2009, 106(4): 367-374.
[3]SHEN L, STRUBLE L, LANGE D. Modeling dynamic segregation of self-consolidating concrete[J]. ACI Materials Journal, 2009, 106(4): 375-380.
[4]KOVLER K, ROUSSEL N. Properties of fresh and hardened concrete[J]. Cement and Concrete Research, 2011, 41(7): 775-792.
[5]CAI Y, LIU Q F. Stability of fresh concrete and its effect on late-age durability of reinforced concrete: An overview[J]. Journal of Building Engineering, 2023, 107701.
[6]MEGID W A, KHAYAT K H. Effect of concrete rheological properties on quality of formed surfaces cast with self-consolidating concrete and superworkable concrete[J]. Cement and Concrete Composites, 2018, 93: 75-84.
[7]GAO X, ZHANG J, SU Y. Influence of vibration-induced segregation on mechanical property and chloride ion permeability of concrete with variable rheological performance[J]. Construction and Building Materials, 2019, 194: 32-41.
[8]PANESAR D K, SHINDMAN B. The effect of segregation on transport and durability properties of self consolidating concrete[J]. Cement and Concrete Research, 2012, 42: 252-264.
[9]ASTM.Standard test method for static segregation of self-consolidating concrete using column technique: ASTM C1610/C1610M-21[S]. West Conshohocken. USA: Annual Book of ASTM, 2021.
[10]NILI M, RAZMARA M. Proposing a new apparatus to assess the properties of self-consolidating concrete[J]. Journal of Testing and Evaluation, 2020, 48(4): 3188-3201.
[11]MAHOUTIAN M, YADEGARAN I, LIBRE N A, et al. Comparison between different test methods used for evaluation of self-compacting concrete's stability[C]//Proceedings of the Fifth international RILEM symposium on self-compacting concrete. Ghent, Belgium: RJLEM publications SARL, 2007: 103-109.
[12]SHEN L, STRUBLE L, LANGE D. New method for measuring static segregation of self-consolidating concrete[J]. Journal of Testing and Evaluation, 2007, 35(3): 303-309.
[13]SHEN L, JOVEIN H B, LI M. Measuring static stability and robustness of self-consolidating concrete using modified segregation probe[J]. Construction and Building Materials, 2014, 70: 210-216.
[14]EL-CHABIB H, NEHDI M. Effect of mixture design parameters on segregation of self-consolidating concrete[J]. ACI Materials Journal, 2006, 103(5): 374-383.
[15]KHAYAT K H, VANHOVE Y, PAVATE T V, et al. Multi-electrode conductivity method to evaluate static stability of flowable and self-consolidating concrete[J]. ACI Materials Journal, 2007, 104(4): 424-433.
[16]MESBAH H A, YAHIA A, KHAYAT K H. Electrical conductivity method to assess static stability of self-consolidating concrete[J]. Cement and Concrete Research, 2011, 41(5): 451-458.
[17]NILI M, RAZMARA M, NILI M, et al. Proposing new methods to appraise segregation resistance of self-consolidating concrete based on electrical resistivity[J]. Construction and Building Materials, 2017, 146: 192-198.
[18]罗大明, 张桂涛. 基于贝叶斯理论的氯离子扩散系数计算模型[J]. 西安建筑科技大学学报(自然科学版), 2019, 51(5): 710-716.
LUO Daming, ZHANG Guitao. Calculation model of chloride diffusion coefficient based on Bayesian theory[J]. J.of Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2019, 51(5): 710-716.
[19]石春香, 石权, 庄仁杰. 多尺度再生随机骨料混凝土材料及梁试件分析[J]. 西安建筑科技大学学报(自然科学版), 2022, 54(2): 237-241.
SHI Chunxiang, SHI Quan, ZHUANG Renjie. Analysis of multi-scale recycled random aggregate concrete materials and beam specimens[J]. J. of Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2022, 54(2): 237-241.
[20]童良玉, 刘清风. 纤维增强混凝土氯离子扩散系数的多尺度预测模型[J]. 复合材料学报, 2023, 39(11): 5181-5191.
TONG Liangyu, LIU Qingfeng. Multi-scale prediction model of chloride diffusivity of fiber reinforced concrete[J]. Acta Materiae Compositae Sinica, 2023, 39(11): 5181-5191.
[21]周宇, 刘清风. 三维混凝土细观模型构建与骨料形态对氯离子扩散影响的数值研究[J]. 材料导报, 2023, 37(24): 22070243.
ZHOU Yu, LIU Qingfeng. 3-D concrete mesoscopic modelling and numerical study on the influence of aggregate morphology on chloride diffusion[J]. Materials Reports, 2023, 37(24): 22070243.
[22]胡哲, 刘清风. 荷载作用下开裂混凝土中多离子传输的数值研究[J]. 材料导报, 2023, 37(9): 21120077.
HU Zhe, LIU Qingfeng. Numerical study of multi-species transport in cracked concrete under external load[J]. Materials Reports, 2023, 37(9): 21120077.
[23]童良玉, 刘清风. 考虑多尺度非均质性的混凝土传输性能预测模型[J]. 建筑材料学报, 2023, 26(10):1-10.
TONG Liangyu, LIU Qingfeng. Modelling of chloride transport in concrete by considering the multi-scale heterogeneous characteristics[J]. Journal of Building Materials, 2023, 26(10):1-10.
[24]CAI Y, LIU Q F, YU L, et al. An experimental and numerical investigation of coarse aggregate settlement in fresh concrete under vibration[J]. Cement and Concrete Composites, 2021, 122: 104153.
[25]XU Z, LI Z. Numerical method for predicting flow and segregation behaviors of fresh concrete[J]. Cement and Concrete Composites, 2021, 123: 104150.
[26]NAVARRETE I, LOPEZ M. Understanding the relationship between the segregation of concrete and coarse aggregate density and size[J]. Construction and Building Materials, 2017, 149: 741-748.
[27]CHIA K S, KHO C C, ZHANG M H. Stability of fresh lightweight aggregate concrete under vibration[J]. ACI Materials Journal, 2005, 102(5): 347-354.
[28]SAFAWI M I, IWAKI I, MIURA T. The segregation tendency in the vibration of high fluidity concrete[J]. Cement and Concrete Research, 2004, 34(2): 219-226.
[29]ESMAEILKHANIAN B, DIEDERICH P, KHAYAT K H, et al. Influence of particle lattice effect on stability of suspensions: application to self-consolidating concrete[J]. Materials and Structures, 2017, 50(1): 39.
[30]胡力群, 夏明达, 夏爽, 等. 卸料角度和粒径分布对级配碎石粗集料均匀性影响研究[J]. 西安建筑科技大学学报(自然科学版), 2019, 51(6): 797-803,824.
HU Liqun, XIA Mingda, XIA Shuang, et al. Study on effect of unloading angles and particle size distributional width on the uniformity of coarse aggregate in graded gravel[J]. J. of Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2019, 51(6): 797-803,824.
[31]MOSTOFINEJAD D, REISI M. A new DEM-based method to predict packing density of coarse aggregates considering their grading and shapes[J]. Construction and Building Materials, 2012, 35: 414-420.
[32]AÏSSOUN B M, HWANG S, KHAYAT K H. Influence of aggregate characteristics on workability of superworkable concrete[J]. Materials and Structures, 2016, 49: 597-609.
[33]GHODDOUSI P, JAVID A A S, SOBHANI J. Effects of particle packing density on the stability and rheology of self-consolidating concrete containing mineral admixtures[J]. Construction and Building Materials, 2014, 53: 102-109.
[34]ISMAIL M K, HASSAN A A A. Influence of mixture composition and type of cementitious materials on enhancing the fresh properties and stability of self-consolidating rubberized concrete[J]. Journal of Materials in Civil Engineering, 2016, 28(1): 04015075.
[35]NAVARRETE I, KURAMA Y, ESCALONA N, et al. Effect of supplementary cementitious materials on viscosity of cement-based pastes[J]. Cement and Concrete Research, 2022, 151: 106635.
[36]MAHDIKHANI M, RAMEZANIANPOUR A A. New methods development for evaluation rheological properties of self-consolidating mortars[J]. Construction and Building Materials, 2015, 75: 136-143.
[37]AMINI K, MEHDIPOUR I, HWANG S D, et al. Effect of binder composition on time-dependent stability and robustness characteristics of self-consolidating mortar subjected to prolonged agitation[J]. Construction and Building Materials, 2016, 112: 654-665.
[38]LIBRE N A, KHOSHNAZAR R, SHEKARCHI M. Relationship between fluidity and stability of self-consolidating mortar incorporating chemical and mineral admixtures[J]. Construction and Building Materials, 2010, 24(7): 1262-1271.
[39]ESMAEILKHANIAN B, KHAYAT K H, YAHIA A, et al. Effects of mix design parameters and rheological properties on dynamic stability of self-consolidating concrete[J]. Cement and Concrete Composites, 2014, 54: 21-28.
[40]WONG H H C, KWAN A K H. Packing density of cementitious materials: part 1-measurement using a wet packing method[J]. Materials and Structures, 2008, 41(4): 689-701.
[41]CHIA K S, ZHANG M. Effect of chemical admixtures on rheological parameters and stability of fresh lightweight aggregate concrete[J]. Magazine of Concrete Research, 2004, 56(8): 465-473.
[42]李国新, 郭艳, 史琛, 等. 高效减水剂与缓凝剂复掺对三元胶凝体系流动性和强度的影响[J]. 西安建筑科技大学学报(自然科学版), 2014, 46(6): 898-902.
LI Guoxin, GUO Yan, SHI Chen, et al. Effects of β-naphthalenelfonicacid-based superplasticizer and retarder on the fluidity and strength of the ternary cementitious system[J]. J. of Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2014, 46(6): 898-902.
[43]张少杰, 李辉, 陈畅. 化学外加剂对轻质脱硫石膏砌块性能的影响[J]. 西安建筑科技大学学报(自然科学版), 2021, 53(4): 602-610.
ZHANG Shaojie, LI Hui, CHEN Chang. Effect of chemical admixtures on properties of light desulfurized gypsum blocks[J]. J. of Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2021, 53(4): 602-610.
[44]FENEUIL B, PITOIS O, ROUSSEL N. Effect of surfactants on the yield stress of cement paste[J]. Cement and Concrete Research, 2017, 100: 32-39.
[45]MEHDIPOUR I, RAZZAGHI M S, AMINI K, et al. Effect of mineral admixtures on fluidity and stability of self-consolidating mortar subjected to prolonged mixing time[J]. Construction and Building Materials, 2013, 40: 1029-1037.
[46]阎培渝, 黎梦圆, 韩建国, 等. 新拌混凝土可泵性的研究进展[J]. 硅酸盐学报, 2018, 46(2): 239-246.
YAN Peiyu, LI Mengyuan, HAN Jianguo, et al. Recent development on pumpability of fresh concrete[J]. Journal of the Chinese Ceramic Society, 2018, 46(2): 239-246.
[47]CHOI M S, KIM Y J, JANG K P, et al. Effect of the coarse aggregate size on pipe flow of pumped concrete[J]. Construction and Building Materials, 2014, 66: 723-730.
[48]SPANGENBERG J, ROUSSEL N, HATTEL J H, et al. Patterns of gravity induced aggregate migration during casting of fluid concretes[J]. Cement and Concrete Research, 2012, 42(12): 1571-1578.
[49]BANFILL P F G, XU Y, DOMONE P L J. Relationship between the rheology of unvibrated fresh concrete and its flow under vibration in a vertical pipe apparatus[J]. Magazine of Concrete Research, 1999, 51(3): 181-190.
[50]LI J J, TIAN Z H, SUN X, et al. Modeling vibration energy transfer of fresh concrete and energy distribution visualization system[J]. Construction and Building Materials, 2022, 354: 129210.
[51]PETROU M F, HARRIES K A, GADALA-MARIA F, et al. A unique experimental method for monitoring aggregate settlement in concrete[J]. Cement and Concrete Research, 2000, 30(5): 809-816.
[52]SAFAWI M I, IWAKI I, MIURA T. A study on the applicability of vibration in fresh high fluidity concrete[J]. Cement and Concrete Research, 2005, 35(9): 1834-1845.
[53]ZHANG J, GAO X, SU Y. Influence of poker vibration on aggregate settlement in fresh concrete with variable rheological properties[J]. Journal of Materials in Civil Engineering, 2019, 31(7): 04019128.
[54]PETROU M F, WAN B L, GADALA-MARIA F, et al. Influence of mortar rheology on aggregate settlement[J]. ACI Materials Journal, 2000, 97(4): 479-485.
[55]董振平, 牛荻涛, 刘西芳, 等. 一般大气环境下钢筋开始锈蚀时间的计算方法[J]. 西安建筑科技大学学报(自然科学版), 2006, 38(2): 204-209.
DONG Zhenping, NIU Ditao, LIU Xifang, et al. Calculation method of the initial time of steel-bar corrosion under atmospheric environment[J]. J. of Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2006, 38(2): 204-209.
[56]宋华, 牛荻涛. 电化学快速锈蚀与自然环境钢筋锈蚀的相似性分析[J]. 西安建筑科技大学学报(自然科学版), 2009, 41(4): 508-511.
SONG Hua, NIU Ditao. Comparability analysis on corrosion by impressed current technique and corrosion in natural environment[J]. J. of Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2009, 41(4): 508-511.
[57]张成琳, 刘清风. 钢筋混凝土中氯盐和硫酸盐耦合侵蚀研究进展[J]. 材料导报, 2022, 36(1): 69-77.
ZHANG Chenglin, LIU Qingfeng. Coupling erosion of chlorides and sulfates in reinforced concrete: a review[J]. Materials Reports, 2022, 36(1): 69-77.
[58]李林洁, 刘清风. 冻融循环下混凝土内部结冰及氯离子传输规律的数值研究[J]. 硅酸盐学报, 2022, 50(8): 2245-2256.
LI Linjie, LIU Qingfeng. Freezing rate and chloride transport in concrete subjected to freeze-thaw cycles: a numerical study[J]. Journal of the Chinese Ceramic Society, 2022, 50(8): 2245-2256.
[59]蔡渝新, 刘清风. 碱激发混凝土抗氯离子侵蚀性能的数值研究[J]. 建筑材料学报, 2023, 26(6): 596-603,622.
CAI Yuxin, LIU Qingfeng. Numerical estimation on chloride erosion resistance of alkali-activated concrete[J]. Journal of Building Materials, 2023, 26(6): 596-603,622.
[60]LIU Q F, FENG G L, XIA J, et al. Ionic transport features in concrete composites containing various shaped aggregates: a numerical study[J]. Composite Structures, 2018, 183: 371-380.
[61]ABYANEH S D, WONG H S, BUENFELD N R. Modelling the diffusivity of mortar and concrete using a three-dimensional mesostructure with several aggregate shapes[J]. Computational Materials Science, 2013, 78: 63-73.
[62]NIKNEZHAD D, RAGHAVAN B, BERNARD F, et al. Towards a realistic morphological model for the meso-scale mechanical and transport behavior of cementitious composites[J]. Composites Part B: Engineering, 2015, 81: 72-83.
[63]MUSLIM F, WONG H S, CHENG G, et al. Combined effects of vertical spacers and segregation on mass transport properties of reinforced concrete[J]. Materials and Structures, 2020, 53: 151.
[64]CAI Y, ZHANG W, YU L, et al. Characteristics of the steel-concrete interface and their effect on the corrosion of steel bars in concrete[J]. Construction and Building Materials, 2020, 253: 119162.
[65]MOHAMMED T U, HAMADA H, HASNAT A, et al. Corrosion of steel bars in concrete with the variation of microstructure of steel-concrete interface[J]. Journal of Advanced Concrete Technology, 2015, 13(4): 230-240.
[66]TORELLI G, LEES J M. Fresh state stability of vertical layers of concrete[J]. Cement and Concrete Research, 2019, 120: 227-243.
[67]蔡渝新. 钢筋-混凝土界面缺陷特征及其对钢筋腐蚀的影响研究[D]. 重庆: 重庆大学, 2020.
CAI Yuxin. Study on the characteristics of steel-concrete interface defects and their effect on the corrosion of steel bars[D]. Chongqing: Chongqing University, 2020.
[68]ZHANG W, FRANÇOIS R, CAI Y, et al. Influence of artificial cracks and interfacial defects on the corrosion behavior of steel in concrete during corrosion initiation under a chloride environment[J]. Construction and Building Materials, 2020, 253: 119165.
[69]CAI Y, ZHANG W, YANG C, et al. Evaluating the chloride permeability of steel-concrete interface based on concretes of different stability[J]. Structural Concrete, 2021, 22(5): 2636-2649.
[70]ANGST U M, GEIKER M R, ALONSO M C, et al. The effect of the steel-concrete interface on chloride-induced corrosion initiation in concrete: a critical review by RILEM TC 262-SCI[J]. Materials and Structures, 2019, 52(4): 88.
[71]CHEN F, LI C Q, BAJI H, et al. Quantification of steel-concrete interface in reinforced concrete using Backscattered Electron imaging technique[J]. Construction and Building Materials, 2018, 179: 420-429.
[72]SOYLEV T A, FRANÇOIS R. Quality of steel-concrete interface and corrosion of reinforcing steel[J]. Cement and Concrete Research, 2003, 33(9): 1407-1415.
[73]ZHANG R, CASTEL A, FRANÇOIS R. Influence of steel-concrete interface defects owing to the top-bar effect on the chloride-induced corrosion of reinforcement[J]. Magazine of Concrete Research, 2011, 63(10): 773-781.
[74]牛荻涛, 陆炫毅, 苗元耀, 等. 盐雾环境下疲劳损伤混凝土氯离子扩散性能[J]. 西安建筑科技大学学报(自然科学版), 2015, 47(5): 617-620,648.
NIU Ditao, LU Xuanyi, MIAO Yuanyao, et al. Diffusion of chloride ions into fatigue-damaged concrete in salt spray environment[J]. J. of Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2015, 47(5): 617-620,648.
[75]刘勇. 氯盐侵蚀对混凝土微观结构损伤的影响研究[J]. 西安建筑科技大学学报(自然科学版), 2020, 52(3): 390-395.
LIU Yong. Study on the damage characteristics of concrete structures by chloride erosion[J]. J. of Xi'an Univ. of Arch. & Techn.(Natural Science Edition), 2020, 52(3): 390-395.
[76]陈伟康, 刘清风. 干湿交替下混凝土中水分和多离子耦合传输的数值研究[J]. 水利学报, 2021, 52(5): 622-632.
CHEN Weikang, LIU Qingfeng. Moisture and multi-ions transport in concrete under drying-wetting cycles: a numerical study[J]. Journal of Hydraulic Engineering, 2021, 52(5): 622-632.
[77]LIU Q F, CAI Y, Peng H, et al. A numerical study on chloride transport in alkali-activated fly ash/slag concretes[J]. Cement and Concrete Research, 2023, 166: 107094.
[78]LIU Q F, SHEN X H, AVIJA B, et al. Numerical study of interactive ingress of calcium leaching, chloride transport and multi-ions coupling in concrete[J]. Cement and Concrete Research, 2023, 165: 107072.
[79]CAI Y, LIU Q F, MENG Z, et al. Influence of coarse aggregate settlement induced by vibration on long-term chloride transport in concrete: a numerical study[J]. Materials and Structures, 2022, 55(9): 235.
[80]PAGE C L. Initiation of chloride-induced corrosion of steel in concrete: Role of the interfacial zone[J]. Materials and Corrosion, 2009, 60(8): 586-592.
[81]SILVA N. Chloride induced corrosion of reinforcement steel in concrete: Threshold values and ion distributions at the concrete-steel interface[D]. Chalmers University of Technology, Doctoral Thesis, 2013.
[82]YU L, FRANÇOIS R, DANG V H, et al. Development of chloride-induced corrosion in pre-cracked RC beams under sustained loading: Effect of load-induced cracks, concrete cover, and exposure conditions[J]. Cement and Concrete Research, 2015, 67: 246-258.
[83]ZHANG W, FRANÇOIS R, YU L. Influence of load-induced cracks coupled or not with top-casting-induced defects on the corrosion of the longitudinal tensile reinforcement of naturally corroded beams exposed to chloride environment under sustained loading[J]. Cement and Concrete Research, 2020, 129: 105972.
[84]HARTT W H, NAM J. Effect of cement alkalinity on chloride threshold and time-to-corrosion of reinforcing steel in concrete[J]. Corrosion, 2008, 64(8): 671-680.
[85]NAM J, KIM K J, HARTT W H. Effects of cement alkalinity on the time-to-corrosion of reinforcing steel in concrete under chloride exposure[J]. Corrosion Science and Technology, 2004, 3(6): 245-250.