参考文献/References:
[1]SHEN Weiguo, WU Jiale, DU Xuejian, et al. Cleaner production of high-quality manufactured sand and ecological utilization of recycled stone powder in concrete[J]. Journal of Cleaner Production, 2022, 375: 134146.
[2]XIAO Jianzhuang, QIANG Chengbing, NANNI Antonio, et al. Use of sea-sand and seawater in concrete construction: Current status and future opportunities[J]. Construction and Building Materials, 2017, 155: 1101-1111.
[3]QIAN Lanping, XU Lingyu, ALREFAEI Yazan, et al. Artificial alkali-activated aggregates developed from wastes and by-products: A state-of-the-art review[J]. Resources, Conservation and Recycling, 2022, 177: 105971.
[4]KOEHNKEN Lois, RINTOUL Max S., GOICHOT Marc, et al. Impacts of riverine sand mining on freshwater ecosystems: A review of the scientific evidence and guidance for future research[J]. River Research and Applications, 2020, 36: 362-370.
[5]HUYNH Trong-Phuoc, HO Lanh Si, HO Quan Van. Experimental investigation on the performance of concrete incorporating fine dune sand and ground granulated blast-furnace slag[J]. Construction and Building Materials, 2022, 347: 128512.
[6]TIAN Kaige, WANG Yanshuai, HONG Shuxian, et al. Alkali-activated artificial aggregates fabricated by red mud and fly ash: Performance and microstructure[J]. Construction and Building Materials, 2021, 281: 122552.
[7]BALAPOUR Mohammad, ZHAO Weijin, GARBOCZI E J, et al. Potential use of lightweight aggregate(LWA)produced from bottom coal ash for internal curing of concrete systems[J]. Cement and Concrete Composites, 2020, 105: 103428.
[8]KADHIM Sarah, ÇEVIK Abdulkadir, NIS Anl, et al. Mechanical behavior of fiber reinforced slag-based geopolymer mortars incorporating artificial lightweight aggregate exposed to elevated temperatures[J]. Construction and Building Materials, 2022, 315: 125766.
[9]TIAN Kaige, WANG Yanshuai, DONG Biqin, et al. Engineering and micro-properties of alkali-activated slag pastes with Bayer red mud[J]. Construction and Building Materials, 2022, 351: 128869.
[10]XU Lingyu, QIAN Lanping, HUANG Botao, et al. Development of artificial one-part geopolymer lightweight aggregates by crushing technique[J]. Journal of Cleaner Production, 2021, 315: 128200.
[11]REN Pengfei, LING Tungchai, MO Kimhung. Recent advances in artificial aggregate production[J]. Journal of Cleaner Production, 2021, 291: 125215.
[12]MERMERDAS Kasm, IPEK Süleyman, ALGIN Zeynep, et al. Combined effects of microsilica, steel fibre and artificial lightweight aggregate on the shrinkage and mechanical performance of high strength cementitious composite[J]. Construction and Building Materials, 2020, 262: 120048.
[13]SHI Minjiao, LING Tungchai, GAN Binlin, et al. Turning concrete waste powder into carbonated artificial aggregates[J]. Construction and Building Materials, 2019, 199: 178-184.
[14]施敏蛟, 林忠财. 人造骨料制造与养护工艺研究概述[J]. 混凝土, 2019, 9: 56-61.
SHI Minjiao, LING Tung-Chai. Review on the manufacturing and curing process ofartificial aggregate[J]. Concrete, 2019, 9: 56-61.
[15]董必钦, 罗小龙, 田凯歌, 等. 碱激发锂渣人造骨料的制备和性能表征[J]. 材料导报, 2021, 35(15): 15011-15016.
DONG Biqin, LUO Xiaolong, TIAN Kaige, et al. Preparation and Characterization of Alkali-activated Lithium Slag-based Artificial Aggregates[J]. Materials Reports, 2021, 35(15): 15011-15016.
[16]THEIR Jumah Musdif, ÖZAKCA Mustafa. Developing geopolymer concrete by using cold-bonded fly ash aggregate, nano-silica, and steel fiber[J]. Construction and Building Materials, 2018, 180, 12-22.
[17]DONG Biqin, CHEN Chufa, WEI Guanqi, et al. Fly ash-based artificial aggregates synthesized through alkali-activated cold-bonded pelletization technology[J]. Construction and Building Materials, 2022, 344, 128268.
[18]XU Lingyu, HUANG Botao, LAO Jiancong, et al. Tailoring strain-hardening behavior of high-strength engineered cementitious composites using hybrid silica sand and artificial geopolymer aggregates[J]. Materials & Design, 2022, 220: 110876.
[19]XU Lingyu, HUANG Botao, QIAN Lanping, et al. Enhancing long-term tensile performance of engineered cementitious composites using sustainable artificial geopolymer aggregates[J]. Cement and Concrete Composites, 2022, 133, 104676.
[20]TIAN Yan, LAI Yuanming, PEI Wansheng, et al. Study on the physical mechanical properties and freeze-thaw resistance of artificial phase change aggregates[J]. Construction and Building Materials, 2022, 329, 127225.
[21]TIAN Yixi, BOURTSALAS A C Thanos, KAWASHIMA Shiho, et al. Performance of Waste-to-Energy fine combined ash/filter cake ash-metakaolin based artificial aggregate[J]. Construction and Building Materials, 2022, 327, 127011.
[22]FANG Yi, AHMAD Riaz M, LAO J. C, et al. Development of artificial geopolymer aggregates with thermal energy storage capacity[J]. Cement and Concrete Composites, 2023, 135, 104834.
[23]QIAN Lanping, XU Lingyu, HUANG Botao, et al. Pelletization and properties of artificial lightweight geopolymer aggregates(GPA): One-part vs. two-part geopolymer techniques[J]. Journal of Cleaner Production, 2022, 374, 133933.
[24]中华人民共和国国家质量监督检验检检疫总局, 中国国家标准化管理委员会. 轻集料及其试验方法 第2部分:轻集料试验方法:GB/T17431.2-2010[S]. 北京:中国标准出版社, 2010.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China. Lightweight aggregates and its test methods-Part 2: Test methods for lightweight aggregates: GB/T17431.2-2010[S]. Beijing: China Standards Press, 2010.
[25]中华人民共和国国家质量监督检验检检疫总局, 中国国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法):GB/T17671-2021[S]. 北京:中国标准出版社, 2021.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China. Test method of cement mortar strength(ISO method:GB/T17671-2021[S]. Beijing: China Standards Press, 2021
[26]中华人民共和国国家质量监督检验检检疫总局, 中国国家标准化管理委员会. 轻集料及其试验方法 第1部分:轻集料(GB/T17431.1-2010)[S]. 北京:中国标准出版社, 2010.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China. Lightweight aggregates and its test methods-Part 1: Lightweight Aggregate(GB/T17431.1-2010)[S]. Beijing: China Standards Press, 2010.
[27]天津大学. 土木工程材料[M]. 第2版. 北京: 中国建筑工业出版社, 2014.
Tianjin University. Civil Engineering Materials[M]. 2nd ed.Beijing:China Construction Industry Press, 2014.
[28]WALKLEY B, PROVIS J L, NICOLAS R SAN, et al. Stoichiometrically controlled C-(A)-S-H/N-A-S-H gel blends via alkali-activation of synthetic precursors[J]. Advances in Applied Ceramics, 2015, 114: 372-377.
[29]YE Nan, CHEN Ye, YANG Jiakuang, et al. Transformations of Na, Al, Si and Fe species in red mud during synthesis of one-part geopolymers[J]. Cement and Concrete Research, 2017, 101:123-130.
[30]马如璋,徐英庭. 穆斯堡尔谱学[M]. 北京: 科学出版社, 1996.
MA Ruzhang, XU Yingting. Mossbauer spectroscopy[M]. Beijing: Science Press, 1996.
[31]胡勇. 拜耳法赤泥地聚物合成及铁对地聚物影响的研究[D]. 武汉: 华中科技大学, 2017.
HU Yong. Study on the synthesis of geopolymer from bayer Red mud and the effect of Fe species on this geopolymer[D]. Wuhan: Huazhong University of Science and Technology, 2017.
[32]叶楠. 拜耳法赤泥活化预处理制备地聚物及形成强度机理研究[D]. 武汉: 华中科技大学, 2017.
YE Nan. Study on the preparation of geopolymer from pretreated bayer Red mud and mechanism of the strength formation[D]. Wuhan: Huazhong University of Science and Technology, 2016.
[33]史才军, 巴维尔·克里文科, 黛拉·罗伊. 碱-激发水泥和混凝土[M]. 北京: 化学工业出版社, 2008.
SHI Caijun, KRIVENKO P V, ROY Della. Alkali-activated cements and concretes[M]. Beijing: Chemical Industry Press, 2008.