[1]田凯歌,王恒岳,王琰帅,等.碱激发赤泥-矿渣人造骨料及其砂浆性能研究[J].西安建筑科技大学学报(自然科学版),2023,55(04):528-539.[doi:10.15986/j.1006-7930.2023.04.007 ]
 TIAN Kaige,WANG Hengyue,WANG Yanshuai,et al.Study on alkali-activated red mud-slag artificial aggregate and its mortar performance[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(04):528-539.[doi:10.15986/j.1006-7930.2023.04.007 ]
点击复制

碱激发赤泥-矿渣人造骨料及其砂浆性能研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
55
期数:
2023年04期
页码:
528-539
栏目:
出版日期:
2023-10-26

文章信息/Info

Title:
Study on alkali-activated red mud-slag artificial aggregate and its mortar performance
文章编号:
1006-7930(2023)04-0528-12
作者:
田凯歌12王恒岳2王琰帅2董必钦2戴建国3邢 锋12
(1.中国地震局工程力学研究所,中国地震局地震工程与工程振动重点实验室,黑龙江 哈尔滨 150080; 2.深圳大学 土木与交通工程学院,广东 深圳 518060; 3.香港理工大学 土木与环境工程系,香港 999077)
Author(s):
TIAN Kaige12 WANG Hengyue2 WANG Yanshuai2 DONG Biqin2 DAI Jianguo3 XING Feng12
(1.Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China; 2.College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; 3.Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hongkong 999077, China)
关键词:
碱激发人造骨料 赤泥 化学稳定性 人造骨料砂浆 强度
Keywords:
alkali-activated artificial aggregates red mud chemical stability mortar with artificial aggregates strength
分类号:
TU526
DOI:
10.15986/j.1006-7930.2023.04.007
文献标志码:
A
摘要:
利用碱激发技术,采用赤泥和矿渣作为前驱体,以水玻璃为碱激发剂,通过冷固结成球工艺制备碱激发赤泥-矿渣人造骨料.实验结果表明所制备的人造骨料的堆积密度低于1 200 kg/m3,平均单颗粒破碎强度可达10.61 MPa,筒压强度最高21.17 MPa,满足轻集料规范中对骨料的技术要求.人造骨料的水化产物主要为C-(N)-A-S-H凝胶、C-S-H凝胶及少量钙矾石.经过28 d饱和Ca(OH)2溶液浸泡,人造骨料的化学成分未发生明显变化,表明在混凝土模拟孔溶液环境下其化学稳定性良好.进一步,以水泥为胶凝材料制备人造骨料砂浆,其28 d强度可达54.2 MPa.利用赤泥-矿渣人造骨料部分替代自然骨料制备砂浆,50%替代率砂浆28 d平均强度提高24.6%.综上所述,碱激发赤泥-矿渣人造骨料不仅可以用于制备人造轻质骨料,改善天然骨料供给不足的现状,还可实现赤泥规模化回收利用.
Abstract:
In this study, alkali activated red mud-slag artificial aggregates were prepared by cold-bonded pelletization technology using red mud and granulated ground blast furnace slag(GGBS)as precursors and sodium silicate as the alkali activator. The experimental results show that bulk densities of the artificial aggregates are less than 1200kg/m3, the average single-particle crushing strength is up to 10.61 MPa and the cylinder compressive strength is up to 21.17 MPa, which meets the specification requirements for the lightweight aggregates. The hydration products of artificial aggregates are mainly the calcium-sodium-silicate-hydrate(C-(N)-A-S-H)gels, calcium-silicate-hydrate(C-S-H)gels and a small amount of ettringites(AFts). After 28 days immersion in saturated Ca(OH)2 solution, no obvious chemical change was detected in the artificial aggregates, indicating that their chemical stability was good in the simulated concrete pore solution. Furthermore, the 28-day compressive strength of cement mortars with the artificial aggregates can reach 54.2 MPa. The average 28-day compressive strength of mortar with 50% partially replaced artificial aggregates could increase by 24.6%. In total, red mud can be manufactured as alkali-activated artificial aggregates to address both the shortage of natural aggregates and the recycling of red mud.

参考文献/References:

[1]SHEN Weiguo, WU Jiale, DU Xuejian, et al. Cleaner production of high-quality manufactured sand and ecological utilization of recycled stone powder in concrete[J]. Journal of Cleaner Production, 2022, 375: 134146.
[2]XIAO Jianzhuang, QIANG Chengbing, NANNI Antonio, et al. Use of sea-sand and seawater in concrete construction: Current status and future opportunities[J]. Construction and Building Materials, 2017, 155: 1101-1111.
[3]QIAN Lanping, XU Lingyu, ALREFAEI Yazan, et al. Artificial alkali-activated aggregates developed from wastes and by-products: A state-of-the-art review[J]. Resources, Conservation and Recycling, 2022, 177: 105971.
[4]KOEHNKEN Lois, RINTOUL Max S., GOICHOT Marc, et al. Impacts of riverine sand mining on freshwater ecosystems: A review of the scientific evidence and guidance for future research[J]. River Research and Applications, 2020, 36: 362-370.
[5]HUYNH Trong-Phuoc, HO Lanh Si, HO Quan Van. Experimental investigation on the performance of concrete incorporating fine dune sand and ground granulated blast-furnace slag[J]. Construction and Building Materials, 2022, 347: 128512.
[6]TIAN Kaige, WANG Yanshuai, HONG Shuxian, et al. Alkali-activated artificial aggregates fabricated by red mud and fly ash: Performance and microstructure[J]. Construction and Building Materials, 2021, 281: 122552.
[7]BALAPOUR Mohammad, ZHAO Weijin, GARBOCZI E J, et al. Potential use of lightweight aggregate(LWA)produced from bottom coal ash for internal curing of concrete systems[J]. Cement and Concrete Composites, 2020, 105: 103428.
[8]KADHIM Sarah, ÇEVIK Abdulkadir, NIS Anl, et al. Mechanical behavior of fiber reinforced slag-based geopolymer mortars incorporating artificial lightweight aggregate exposed to elevated temperatures[J]. Construction and Building Materials, 2022, 315: 125766.
[9]TIAN Kaige, WANG Yanshuai, DONG Biqin, et al. Engineering and micro-properties of alkali-activated slag pastes with Bayer red mud[J]. Construction and Building Materials, 2022, 351: 128869.
[10]XU Lingyu, QIAN Lanping, HUANG Botao, et al. Development of artificial one-part geopolymer lightweight aggregates by crushing technique[J]. Journal of Cleaner Production, 2021, 315: 128200.
[11]REN Pengfei, LING Tungchai, MO Kimhung. Recent advances in artificial aggregate production[J]. Journal of Cleaner Production, 2021, 291: 125215.
[12]MERMERDAS Kasm, IPEK Süleyman, ALGIN Zeynep, et al. Combined effects of microsilica, steel fibre and artificial lightweight aggregate on the shrinkage and mechanical performance of high strength cementitious composite[J]. Construction and Building Materials, 2020, 262: 120048.
[13]SHI Minjiao, LING Tungchai, GAN Binlin, et al. Turning concrete waste powder into carbonated artificial aggregates[J]. Construction and Building Materials, 2019, 199: 178-184.
[14]施敏蛟, 林忠财. 人造骨料制造与养护工艺研究概述[J]. 混凝土, 2019, 9: 56-61.
SHI Minjiao, LING Tung-Chai. Review on the manufacturing and curing process ofartificial aggregate[J]. Concrete, 2019, 9: 56-61.
[15]董必钦, 罗小龙, 田凯歌, 等. 碱激发锂渣人造骨料的制备和性能表征[J]. 材料导报, 2021, 35(15): 15011-15016.
DONG Biqin, LUO Xiaolong, TIAN Kaige, et al. Preparation and Characterization of Alkali-activated Lithium Slag-based Artificial Aggregates[J]. Materials Reports, 2021, 35(15): 15011-15016.
[16]THEIR Jumah Musdif, ÖZAKCA Mustafa. Developing geopolymer concrete by using cold-bonded fly ash aggregate, nano-silica, and steel fiber[J]. Construction and Building Materials, 2018, 180, 12-22.
[17]DONG Biqin, CHEN Chufa, WEI Guanqi, et al. Fly ash-based artificial aggregates synthesized through alkali-activated cold-bonded pelletization technology[J]. Construction and Building Materials, 2022, 344, 128268.
[18]XU Lingyu, HUANG Botao, LAO Jiancong, et al. Tailoring strain-hardening behavior of high-strength engineered cementitious composites using hybrid silica sand and artificial geopolymer aggregates[J]. Materials & Design, 2022, 220: 110876.
[19]XU Lingyu, HUANG Botao, QIAN Lanping, et al. Enhancing long-term tensile performance of engineered cementitious composites using sustainable artificial geopolymer aggregates[J]. Cement and Concrete Composites, 2022, 133, 104676.
[20]TIAN Yan, LAI Yuanming, PEI Wansheng, et al. Study on the physical mechanical properties and freeze-thaw resistance of artificial phase change aggregates[J]. Construction and Building Materials, 2022, 329, 127225.
[21]TIAN Yixi, BOURTSALAS A C Thanos, KAWASHIMA Shiho, et al. Performance of Waste-to-Energy fine combined ash/filter cake ash-metakaolin based artificial aggregate[J]. Construction and Building Materials, 2022, 327, 127011.
[22]FANG Yi, AHMAD Riaz M, LAO J. C, et al. Development of artificial geopolymer aggregates with thermal energy storage capacity[J]. Cement and Concrete Composites, 2023, 135, 104834.
[23]QIAN Lanping, XU Lingyu, HUANG Botao, et al. Pelletization and properties of artificial lightweight geopolymer aggregates(GPA): One-part vs. two-part geopolymer techniques[J]. Journal of Cleaner Production, 2022, 374, 133933.
[24]中华人民共和国国家质量监督检验检检疫总局, 中国国家标准化管理委员会. 轻集料及其试验方法 第2部分:轻集料试验方法:GB/T17431.2-2010[S]. 北京:中国标准出版社, 2010.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China. Lightweight aggregates and its test methods-Part 2: Test methods for lightweight aggregates: GB/T17431.2-2010[S]. Beijing: China Standards Press, 2010.
[25]中华人民共和国国家质量监督检验检检疫总局, 中国国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法):GB/T17671-2021[S]. 北京:中国标准出版社, 2021.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China. Test method of cement mortar strength(ISO method:GB/T17671-2021[S]. Beijing: China Standards Press, 2021
[26]中华人民共和国国家质量监督检验检检疫总局, 中国国家标准化管理委员会. 轻集料及其试验方法 第1部分:轻集料(GB/T17431.1-2010)[S]. 北京:中国标准出版社, 2010.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China. Lightweight aggregates and its test methods-Part 1: Lightweight Aggregate(GB/T17431.1-2010)[S]. Beijing: China Standards Press, 2010.
[27]天津大学. 土木工程材料[M]. 第2版. 北京: 中国建筑工业出版社, 2014.
Tianjin University. Civil Engineering Materials[M]. 2nd ed.Beijing:China Construction Industry Press, 2014.
[28]WALKLEY B, PROVIS J L, NICOLAS R SAN, et al. Stoichiometrically controlled C-(A)-S-H/N-A-S-H gel blends via alkali-activation of synthetic precursors[J]. Advances in Applied Ceramics, 2015, 114: 372-377.
[29]YE Nan, CHEN Ye, YANG Jiakuang, et al. Transformations of Na, Al, Si and Fe species in red mud during synthesis of one-part geopolymers[J]. Cement and Concrete Research, 2017, 101:123-130.
[30]马如璋,徐英庭. 穆斯堡尔谱学[M]. 北京: 科学出版社, 1996.
MA Ruzhang, XU Yingting. Mossbauer spectroscopy[M]. Beijing: Science Press, 1996.
[31]胡勇. 拜耳法赤泥地聚物合成及铁对地聚物影响的研究[D]. 武汉: 华中科技大学, 2017.
HU Yong. Study on the synthesis of geopolymer from bayer Red mud and the effect of Fe species on this geopolymer[D]. Wuhan: Huazhong University of Science and Technology, 2017.
[32]叶楠. 拜耳法赤泥活化预处理制备地聚物及形成强度机理研究[D]. 武汉: 华中科技大学, 2017.
YE Nan. Study on the preparation of geopolymer from pretreated bayer Red mud and mechanism of the strength formation[D]. Wuhan: Huazhong University of Science and Technology, 2016.
[33]史才军, 巴维尔·克里文科, 黛拉·罗伊. 碱-激发水泥和混凝土[M]. 北京: 化学工业出版社, 2008.
SHI Caijun, KRIVENKO P V, ROY Della. Alkali-activated cements and concretes[M]. Beijing: Chemical Industry Press, 2008.

备注/Memo

备注/Memo:
收稿日期:2022-11-11修回日期:2023-07-16
基金项目:国家基金委与香港研究资助局联合科研资助基金合作研究基金项目(NSFC-RGC,52061160481)
第一作者:田凯歌(1991—),男,硕士,主要从事碱激发人造骨料研究.E-mail:tiankaige@outlook.com
通信作者:邢 锋(1965—),男,教授,博士生导师,主要从事混凝土耐久性研究.E-mail:xingf@szu.edu.cn
更新日期/Last Update: 2023-08-28