[1]张悦,王陈高男,王炎松.武当山华阳岩和隐仙岩热湿环境特征及其病害关联性研究[J].西安建筑科技大学学报(自然科学版),2024,56(06):808-818.[doi:10.15986/j.1006-7930.2024.06.003]
 ZHANG Yue,WANG Chengaonan,WANG Yansong.Study on thermal-humidity environment characteristics and disease relevance of Huayang rock and Yinxian rock in Wudang mountains[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(06):808-818.[doi:10.15986/j.1006-7930.2024.06.003]
点击复制

武当山华阳岩和隐仙岩热湿环境特征及其病害关联性研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
56
期数:
2024年06期
页码:
808-818
栏目:
出版日期:
2024-12-28

文章信息/Info

Title:
Study on thermal-humidity environment characteristics and disease relevance of Huayang rock and Yinxian rock in Wudang mountains
文章编号:
1006-7930(2024)06-0808-11
作者:
张悦王陈高男王炎松
(武汉大学 城市设计学院,湖北 武汉 430072)
Author(s):
ZHANG Yue WANG Chengaonan WANG Yansong
(School of Urban Design, Wuhan University, Wuhan 430072, China)
关键词:
武当山岩庙病害分布热湿环境关联性预防性保护
Keywords:
Wudang mountain rock temple disease distribution thermal and humid environment relevance preventive protection
分类号:
TU251;TU111
DOI:
10.15986/j.1006-7930.2024.06.003
文献标志码:
A
摘要:
建筑遗产的保存状况与其赋存环境紧密相关.以武当山华阳岩和隐仙岩为研究对象,通过现场病害勘察、环境监测以及CFD模拟技术,在明确病害现状的基础上,揭示了两岩庙的热湿环境特征及其与病害发生之间的关联.结果表明,剥落病害是两岩庙最主要的病害类型.华阳岩病害程度更高,分布呈现显著的空间差异.通过对两岩庙环境监测数据分析,发现两岩庙热湿环境差异集中体现在相对湿度上,华阳岩日均相对湿度及高湿度天数均显著高于隐仙岩.进一步对华阳岩内部空间进行CFD湿度场模拟,表明华阳岩内部高湿度区域集中在石殿西侧,与剥落病害严重区域高度吻合.华阳岩不利的湿度环境以及岩穴内部的不均匀的湿度分布共同说明,武当山岩庙湿度环境与病害发生之间存在关联,高湿度是导致病害发生的重要因素.进而通过湿度与温度、光照、降雨及风的相关性探讨,推测低风速与高湿度的形成密切相关.有助于探析赋存环境与建筑遗产保存之间的关联机制,同时能够为武当山岩庙建筑预防性保护方法提供科学支撑.
Abstract:
The preservation status of architectural heritage is closely related to its environment. Taking Huayang Rock and Yinxian Rock in Wudang Mountain as the research objects, this paper, on the basis of clarifying the current status of the diseases, reveals the thermal and humid environment characteristics of the two rock temples and their correlation with the occurrence of diseases through onsite disease investigation. The results indicate that: the spalling disease is the main disease type of two rock temples. The disease degree of Huayang Rock is higher, and the distribution shows significant spatial difference. The difference between the thermalhumidity environment of the two rock temples is mainly reflected in the relative humidity, and the average daily relative humidity and high humidity days of Huayang Rock are significantly higher than those of Yinxian Rock. Further CFD humidity field simulation of the inner space of Huayang Rock shows that the high humidity area in Huayang Rock is concentrated in the west side of the stone hall, which is highly consistent with the area with serious spalling disease. The unfavorable humidity environment of Huayang Rock and the uneven humidity distribution in the cavern indicate that there is a significant correlation between the humidity environment and the occurrence of diseases in Wudang Mountain Rock Temple, and high humidity is an important factor leading to the occurrence of diseases. Through the discussion of the correlation between humidity and temperature, light, rainfall and wind, it is speculated that low wind speed is closely related to the formation of high humidity. This study is helpful to explore the correlation mechanism between the occurrence environment and the preservation of architectural heritage, and can provide scientific support for the preventive protection method of rock temple buildings in Wudang mountain.

参考文献/References:

[1]张良皋.武当文化丛书精选:武当山古建筑[M].北京:中国地图出版社,2006.

ZHANG Lianggao. Anthology of Wudang cultural series: The ancient architecture of Mount Wudang[M]. Beijing: Sino Map Press, 2006.
[2]安程, 吕宁.故宫内外不可移动文物赋存环境的比较性分析[J].故宫博物院院刊,2016 (2):147153,163.
AN Cheng, Lü Ning. A comparative analysis of the environmental conditions of immovable cultural relics inside and outside the Forbidden City[J]. Palace Museum Journal, 2016 (2): 147-153,163.
[3]ZHU L P, WANG J C, LI B Y. The impact of solar radiation upon rock weathering at low temperature: a laboratory study[J].Permafrost and Periglacial Processes, 2003, 14(1):61-67.
[4]陈海玲,陈港泉,NEVILLE A,等.开放参观对莫高窟洞窟微环境的影响[J].文物保护与考古科学,2017,29(6):10-17.
CHEN Hailing, CHEN Gangquan, NEVILLE Agnew, et al. The impact of visitation on the microenvironment of the Mogao Caves[J]. Sciences of Conservation and Archaeology, 2017, 29(6): 10-17.
[5]MIKE C.The conservation of cave 85 at the Mogao Grottoes Dunhuang: A collaborative project of the getty conservation institute and the Dunhuang academy[J].Journal of the Institute of Conservation,2016,39(1):64-67.
[6]LAIZ L, GONZALEZJ M, SAIZ-JIMENEZ C. Microbial communities in caves: Ecology, physiology and effects on paleolithic paintings [J]. Art, Biology and Conservation: Biodeterioration of Works of Art,2003 (1): 210-225.
[7]ELENA S, S. A G,CHIARA C, et al. Climate change impacts on cultural heritage: A literature review[J].Wiley Interdisciplinary Reviews: Climate Change,2021,12(4):e710.
[8]陈海玲,陈港泉,薛平,等.敦煌莫高窟第465窟温湿度时空分布特征[J].干旱区资源与环境,2018,32(2):155-160.
CHEN Hailing, CHEN Gangquan, XUE Ping, et al. Spatial and temporal distribution of temperature and relative humidity in Mogao Cave 465[J]. Journal of Arid Land Resources and Environment, 2018, 32(2): 155-160.
[9]贺东鹏,武发思,胡军舰,等.麦积山石窟第127窟赋存环境特征及对壁画病害的影响[J].西北大学学报(自然科学版),2022,52(4):678-690.
HE Dongpeng, WU Fasi, HU Junjian, et al. Environmental characteristics of cave 127 in the Maijishan Grottoes and its influence on mural diseases[J]. Journal of Northwest University (Natural Science Edition), 2022, 52(4): 678-690.
[10]孟圆悦,闫增峰,王江丽,等.龙门石窟大卢舍那像龛太阳辐射特征研究[J].干旱区资源与环境,2022,36(6):129-138.
MENG Yuanyue, YAN Zengfeng, WANG Jiangli, et al. Research on solar radiation characteristics in Vairocana Buddha niche in Longmen Grottoes[J]. Journal of Arid Land Resources and Environment, 2022, 36(6): 129-138.
[11]尚瑞华,闫增峰,王旭东,等.敦煌莫高窟窟区风环境研究[J]. 西安建筑科技大学学报(自然科学版),2017,49(1):99-104.
SHANG Ruihua, YAN Zengfeng, WANG Xudong, et al. Research on wind environment of Mogao Grottoes in Dunhuang[J]. J. Xi′an Univ. of Arch. & Tech.(Natural Science Edition), 2017, 49(1): 99-104.
[12]孟庆龙,王元,李彦鹏.环境模拟实验室内温度场与速度场的数值模拟与实验研究[J].西安建筑科技大学学报(自然科学版),2013,45(5):712-718.
MENG Qinglong, WANG Yuan, LI Yanpeng. Numerical simulation and experiment for temperature and velocity field in man made environment laboratory[J]. J. Xi′an Univ. of Arch. & Tech. (Natural Science Edition), 2013, 45(5): 712-718.
[13]黄翔,李婷婷,刘凯磊,等.乌鲁木齐某数据中心热环境分析及气流组织优化研究[J].西安建筑科技大学学报(自然科学版),2019, 51(1):104-108.
HUANG Xiang, Li Tingting, Liu Kailei, et al. Analysis of the thermal environment analysis and air distribution optimization fora data room in Urumgi[J]. J. Xi′an Univ. of Arch.& Tech. (Natural Science Edition), 2019, 51(1): 104-108.
[14]张春庭,苏伯民,张正模.敦煌莫高窟微环境控制方式的CFD仿真与实验[J].敦煌研究,2017 (6):167-171.
ZHANG Chunting, SU Bomin, ZHANG Zhengmo. The CFD simulation and test of the control mode of the Mogao Grottoes micro environment[J]. Dunhuang Research, 2017(6): 167-171.
[15]刘振生.武当山隐仙岩砖石殿建筑特征及成因解析研究[D].武汉:华中科技大学,2020.
LIU Zhensheng. Analysis and research on the architectural features and causes of the brick-and-stone hall of Yinxian rock in Wudang mountains[D]. Wuhan: Huazhong University of Science and Technology, 2020.
[16]国家质量监督检验检疫总局,中国国家标准化管理委员会.馆藏砖石文物病害与图示:GB/T 30688—2014[S].北京:中国标准出版社,2015.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, standardization Administration of the People’s Republic of China. Stone and brick collection disease and illustration:GB/T 30688—2014[S].Beijing: Standards Press of China, 2015.
[17]许萍,刘壮壮,秦嘉琦,等.基于Fluent模拟降雨对木结构古建筑室内温湿度的影响[J].林产工业,2021,58(8):85-89,92.
XU Ping, LIU Zhuangzhuang, QIN Jiaqi, et al. Influence of rainfall on the indoor temperature and humidity of an ancient timber building based on fluent simulation[J]. China Forest Products Industry, 2021, 58(8): 85-89,92.
[18]PATANKAR S V, IVANOVIC M, SPARROW E M. Analysis of turbulent flow and heat transfer in internally finned tubes and annuli[J]. Journal of Heat Transfer. 1979, 101(1):29.
[19]LI G S, WANG C W F, QUA D J J,et al. Study on temperature and humidity environment of grotto 72 at the Mogao Grottoes in Dunhuang, China[J].International Journal of Climatology, 2013, 33(8):1863-1872.
[20]苏振妍,杨冰卓,张虎元.莫高窟第276窟可溶盐测定与环境监测分析[J].兰州大学学报(自然科学版),2021,57(2):226-232.
SU Zhenyan, YANG Bingzhuo, ZHANG Huyuan. Soluble salt determination and environmental monitoring of Cave 276 in Mogao Grottoes[J]. Journal of Lanzhou University (Natural Science Edition), 2021, 57(2): 226232.
[21]LIU Xiaobo, MENG Han, WANG Yali, et al.Water is a critical factor in evaluating and assessing microbial colonization and destruction of Angkor sandstone monuments[J].International Biodeterioration & Biodegradation, 2018, 133:9-16.
[22]陈港泉,苏伯民,赵林毅,等.莫高窟第85窟壁画地仗酥碱模拟试验[J].敦煌研究, 2005(4):62-66.
CHEN Gangquan, SU Bomin, ZHAO Linyi, et al. Research on the distribution characteristics of air temperature and humidity and the effects of precipitation on humidity in Mogao Cave 85[J]. Dunhuang Research, 2005(4): 62-66.
[23]AGNEW N, MAEKAWA S, WEI S. Causes and mechanisms of deterioration and damage in Cave 85[C]//SRC. Los Angeles: The Getty Conservation Institute, 2010.
[24]赵国利. 基于μHAMCFD瞬态耦合模型的南唐二陵壁画原位环境特征研究[D].南京:东南大学,2021.
ZHAO Guoli. Study on in-situ environmental characteristics of murals in two Nantang tombs based on ΜhamCFD transient coupling model[D]. Nanjing: Southeast University, 2021.
[25]胡军舰,贺东鹏,武发思,等.麦积山石窟第32窟内外温湿度比较研究[J].干旱区资源与环境,2021,35(6):66-72.
HU Junjian, HE Dongpeng, WU Fasi, et al. Comparison of temperature and relative humidity between inside and outside Cave 32,Maijishan Grottoes[J]. Journal of Arid Land Resources and Environment, 2021, 35(6):66-72.
[26]AN W B, WANG L, CHEN H.Mechanical Properties of weathered feldspar sandstone after experiencing drywet cycles[J].Advances in Materials Science and Engineering, 2020:1-15.
[27]WANG Chengaonan, CHEN Mu,WANG Yansong. Surface flaking mechanism of stone components of ancient building complex in Wudang Mountain, China[J].Construction and Building Materials, 2023, 399(10):1-19.
[28]DUDKO V, ROSENFELDT S, RENE SIEGEL, et al. Delamination by repulsive osmotic swelling of synthetic nahectorite with variable charge in binary dimethyl sulfoxidewater mixtures[J].Langmuir: the ACS Journal of Surfaces and Colloids, 2022, 38(35):10781-10790.
[29]LI S, HE H, LIANG X,et al. Transformation of Ordered Albite into Kaolinite: Implication for the “Booklet” Morphology[J].ACS Earth and Space Chemistry, 2022,6(4):1133-1142.
[30]GUO F, JIANG G. Investigation into rock moisture and salinity regimes: Implications of sandstone weathering in Yungang Grottoes, China[J].Carbonates and Evaporites, 2015,30 (1): 1-11.
[31]YAO Shanshan, YAN Zengfeng, MA Qian, et al. Analysis of the annual hygrothermal environment in the Maijishan Grottoes by field measurements and numerical simulations[J].Building and Environment, 2022, 221(8): 1-19.
[32]张博,崔惠萍,裴强强,等.不同开放环境下北石窟洞窟温湿度变化特征[J].岩石力学与工程学报,2021,40(S1):2834-2840.
ZHANG Bo, CUI Huiping, PEI Qiangqiang, et al. Characteristics of Temperature and humidity variations in Northern Grottoes under different open conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2021,40(S1): 2834-2840.
[33]张正模,刘洪丽,郭青林,等.突发性强降雨对莫高窟洞窟微环境影响分析[J].敦煌研究,2013(1): 120-124.
ZHANG Zhengmo, LIU Hongli, GUO Qinglin, et al. Analysis of the impact of sudden heavy rainfall on the microenvironment of the caves at Mogao[J]. Dunhuang Research, 2013(1):120-124.
[34]王江丽,闫增峰.强降雨天气下的莫高窟洞窟环境调控方案初步研究[J].建筑与文化,2014,(3): 62-65.
WANG Jiangli, YAN Zengfeng. The environmental control equipment system of the Mogao Caves under heavy rainfall[J]. Architecture & Culture, 2014(3): 62-65.
[35]周宝发,郎嘉琛,闫增峰,等.强降雨天气下麦积山石窟第126窟自然通风规律研究[J].干旱区资源与环境,2021,35(10):155-160.
ZHOU Baofa, LANG Jiachen, YAN Zengfeng, et al. Natural ventilation law for the cave 126 under heavy rainfall in Maiji mountain Grottoes[J]. Journal of Arid Land Resources and Environment, 2021, 35(10): 155-160.
[36]孟圆悦. 基于文物风化机理的龙门石窟物理环境调控技术研究[D].西安:西安建筑科技大学,2023.
MENG Yuanyue. Research on Longmen Grottoes physical environment control technology based on the mechanism of cultural relic weathering[D]. Xi′an: Xi′an Univ. of Arch. & Tech., 2023.

备注/Memo

备注/Memo:
收稿日期:2023-08-25修回日期:2024-11-14
基金项目:国家自然科学基金(52278042)
第一作者:张 悦(1999—),女,硕士生,主要从事建筑遗产保护方面的研究. E-mail: 2017301530017@whu.edu.cn
通信作者:王炎松(1969—),男,博士,教授,主要从事建筑遗产保护方面的研究. E-mail: 00011853@whu.edu.cn
更新日期/Last Update: 2025-02-11