[1]刘妮娜,温 凯,飞 菲,等.西安近断层区黄土动力特性研究[J].西安建筑科技大学学报(自然科学版),2024,56(04):544-553.[doi:10.15986/j.1006-7930.2024.04.008]
 LIU Nina,WEN Kai,FEI Fei,et al.Study on dynamic characteristics of loess in Xi'an near-fault zone[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(04):544-553.[doi:10.15986/j.1006-7930.2024.04.008]
点击复制

西安近断层区黄土动力特性研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
56
期数:
2024年04期
页码:
544-553
栏目:
出版日期:
2024-08-28

文章信息/Info

Title:
Study on dynamic characteristics of loess in Xi'an near-fault zone
文章编号:
1006-7930(2024)04-0544-10
作者:
刘妮娜12温 凯1飞 菲1 田开飞1刘松彪3高 帅4
(1.长安大学 地质工程与测绘学院,陕西 西安 710054; 2.西部矿产资源与地质工程教育部重点实验室,陕西 西安 710054; 3.长江三峡勘测研究院(武汉),湖北 武汉 430074; 4.天津公路工程设计研究院有限公司,天津 300171)
Author(s):
LIU Nina12WEN Kai1FEI Fei1TIAN Kaifei1LIU Songbiao3GAO Shuai4
(1.School of Geological Engineering and Surveying and Mapping, Chang'an University, Xi'an 710054, China; 2.Key Laboratory of Western Mineral Resources and Geological Engineering, Ministry of Education, Xi'an 710054, China; 3.Yangtze Three Gorges Survey and Research Institute, Wuhan 430074, China; 4.Tianjin Highway Engineering Design & Research Institute Co., Ltd., Tianjin 300171, China)
关键词:
活动断裂 动三轴试验 黄土 动剪切模量 阻尼比
Keywords:
active fault dynamic triaxial test loess dynamic shear modulus damping ratio
分类号:
TU411.8
DOI:
10.15986/j.1006-7930.2024.04.008
文献标志码:
A
摘要:
为研究近断层区黄土的动剪切模量和阻尼比特性,以近骊山断层区黄土为研究对象,采用GDS动三轴试验仪进行动三轴试验,分析黄土动剪切模量和阻尼比在围压、饱和度、频率三种因素影响下的变化规律.结果表明:近断层区黄土动剪切模量和饱和度、固结比呈负相关关系,且降幅逐渐减小; 与振动频率呈正相关关系,并且随着振动频率的增加,增幅逐渐减小.近断层区饱和黄土的动剪切模量出现反弹现象,其值高于非饱和黄土,其原因可能为断裂带黄土次生裂隙更为发育.其孔隙水溶解土骨架中的可溶盐增多,土体趋于软化,黏滞性增强,所需的动剪切应力增加.近断层区黄土阻尼比与饱和度、围压和固结比呈负相关关系,且降幅逐渐减小,最后趋于稳定.饱和度对黄土阻尼比影响最大,围压和固结比对阻尼比影响较小.近断层区原状黄土与重塑黄土阻尼比大致近似,近似可认为土体扰动对骊山山前断裂场地黄土影响较小.本文采用半对数坐标系下的线性函数来量化动剪切模量、阻尼比与动应变的关系,且拟合效果较好.这一研究结果可为近断层区的动力响应机制分析提供参考.
Abstract:
In order to study the characteristics of dynamic shear modulus and damping ratio of loess in the near-fault area, the dynamic triaxial test was carried out by GDS dynamic triaxial tester with the loess in the near-fault area as the research object, and the dynamic shear modulus and damping ratio of loess were analyzed under the influence of confining pressure, saturation and frequency. The results show that the dynamic shear modulus of loess in the near-fault area is negatively correlated with saturation and consolidation ratio, and the decline decreases gradually, but it is positively correlated with the vibration frequency, and the amplification gradually decreases with the increase of vibration frequency. The dynamic shear modulus of saturated loess in the near-fault zone rebounds, and its value is higher than that of unsaturated loess, which may be due to the fact that the secondary fissures of loess in the fault zone are more developed. The dissolution of soluble salts in the soil skeleton by pore water increases, causing the soil to soften and enhance its viscosity, resulting in an increase in the required dynamic shear stress The damping ratio of loess in the near-fault zone is negatively correlated with saturation, confining pressure and consolidation ratio, and the decrease gradually decreases and finally tends to be stable. Saturation has the greatest influence on the damping ratio of loess, while confining pressure and consolidation ratio have little influence on the damping ratio. The damping ratio of undisturbed loess and remolded loess in the near-fault zone is roughly similar, indicating that soil disturbance has a relatively small impact on the loess at the Lishan Mountain front fault site. In this paper, the linear function in semi logarithmic coordinate system is used to quantify the relationship between dynamic shear modulus, damping ratio and dynamic strain, and the fitting effect is good. The results of this study can provide a reference for the analysis of the dynamic response mechanism in the near-fault zone.

参考文献/References:

[1]尹力峰, 王坚, 高杰. 地下管道的震害特征与研究概述[J]. 高原地震, 2004(2): 27-37.
YIN Lifeng, WANG Jian, GAO Jie. Summary on earthquake disaster features and anti-seimic research of underground pipes[J]. Earthquake Research in Plateau, 2004(2):27-37.
[2]张曦. 龙门山地区地震前后地应力特征及突变规律[D]. 成都: 成都理工大学, 2014.
ZHANG Xi. The Characteristics of geostress and the mutation rules in longmen mountain area before and after Wenchuan earthquake[D]. Chengdu: Chengdu University of Technology, 2014.
[3]王彦东, 杜宇本, 袁传保. 地震次生地质灾害与成兰铁路选线[J]. 地质灾害与环境保护, 2013, 24(4): 63-68.
WANG Yandong, DU Yuben, YUAN Chuanbao. Secondary geological disasters caused by earthquake and Cheng-Lan Railway selection[J]. Journal of Geological Hazards and Environment Preservation, 2013,24(4):63-68.
[4]SUMYD F, GAHERTY J B, KIM W Y, et al. 加利福尼亚湾南部地震和断层作用的机制[J]. 世界地震译丛, 2013(Z1): 24-51.
SUMY D F, GAHERTY J B, KIM W Y, et al. The mechanisms of earthquake and fault in the Southern Gulf of California[J]. Translated world Seismology, 2013(Z1):24-51.
[5]马兰, 曹广超, 曹生奎. 1971年以来土耳其强震时空特征研究[J]. 地震学报, 2014, 36(2): 244-251, 339.
MA Lan, CAO Guangchao, CAO Shengkui. Spatio-temporal characteristics of strong earthquakes in Turkey since the year 1971[J]. Acta Seismology Sinica, 2014,36(2):244-251, 339.
[6]徐良鑫, 卞菊梅, 呼楠, 等. 骊山山前断裂华清池以西段晚更新世以来的活动性[J]. 地震地质,2019, 41(3): 561-575.
XU Liangxin, BIAN Jumei, HU Nan, et al. Activity since late Pleistocene in the western segment of Huaqingchi, Lishan piedmont fault[J]. Seismogeology, 2019, 41(3): 561-575.
[7]薄峰.城市建设地质环境适宜性评价——以西安市区为例[D].西安:长安大学,2014.
BO Feng. Geological environment suitability evaluation of urban construction:A case study on the urban area of Xi'an city[D].Xi'an:Chang'an University, 2014.
[8]万学谦.下穿居民区黄土隧道变形及施工方法优化研究[D].西安:西安建筑科技大学,2020.
WAN Xueqian. Study on deformation and construction method optimization of loess tunnel under residential area[D].Xi'an:Xi'an Univ. of Arch. & Tech., 2020.
[9]于文龙,邓国华,亢佳伟.西安地铁工程降水风险评价及处置措施研究[J].水利与建筑工程学报,2021,19(6):158-164.
YU Wenlong, DENG Guohua, KANG Jiawei. Research on risk assessment and treatment measures of precipitation in Xi'an subway project[J]. Journal of Water Conservancy and Construction Engineering, 2021,19(6): 158-164.
[10]谢霞霞.湿陷性黄土地区地下综合管廊施工安全风险评价研究[D].西安:西安建筑科技大学,2021.
XIE Xiaxia. Study on safety risk assessment of underground utility tunnel construction in collapsible loess area[D].Xi'an:Xi'an Univ. of Arch. & Tech., 2021.
[11]王谦,刘钊钊,王兰民,等.黄土地基抗震处理技术研究进展与展望[J].防灾减灾工程学报,2021,41(6):1366-1381.
WANG Qian, LIU Zhaozhao, WANG Lanmin, et al. Research progress and prospect of seismic treatment technology for loess foundation[J]. Journal of Disaster Prevention and Mitigation Engineering, 2021, 41(6): 1366-1381.
[12]颜灵勇,李孝波,欧阳刚垒.黄土地震滑坡形成机理研究的若干进展[J].防灾科技学院学报,2021,23(2):46-53.
YAN Lingyong, LI Xiaobo, OUYANG Ganglei. Some progress in the study of the formation mechanism of loess seismic landslide[J]. Journal of College of Disaster Prevention Science and Technology, 2021,23(2): 46-53.
[13]程波,赵阿宁,张新社.西安城市地质与可持续发展研究[J].西北地质,2021,54(4):259-265.
CHENG Bo, ZHAO Aning, ZHANG Xinshe. Xi'an urban geology and sustainable development research[J].Northwest Geology, 2021,54(4): 259-265.
[14]甘忠颖. 基于活动断层的城市地震灾害评价研究[D]. 北京: 北京交通大学, 2020.
GAN Zhongying. Research on urban earthquake disaster evaluation based on active faults[D]. Beijing: Beijing Jiaotong University, 2020.
[15]吴中海. 活断层的定义与分类——历史、现状和进展[J]. 地球学报, 2019, 40(5): 661-697.
WU Zhonghai. The definition and classification of active faults: History, current status and progress[J]. Acta Geoscientica Sinica, 2019,40(5):661-697.
[16]黄强兵, 彭建兵, 王飞永, 等. 特殊地质城市地下空间开发利用面临的问题与挑战[J]. 地学前缘, 2019, 26(3): 85-94.
HUANG Qiangbing, PENG Jianbing, WANG Feiyong, et al. Issues and challenges in the development of urban underground space in adverse geological environment[J]. Earth Sciences Frontiers, 2019,26(3): 85-94.
[17]彭建兵, 卢全中, 黄强兵, 等. 汾渭盆地地裂缝灾害[M]. 北京: 科学出版社, 2017.
PENG jianbing, LU Quanzhong, HUANG Qiangbing, et al. Ground fissure disaster in Fenhe and Wei basins[M]. Beijing: Science Press, 2017.
[18]张培震, 邓起东, 张竹琪, 等. 中国大陆的活动断裂、地震灾害及其动力过程[J]. 中国科学D辑:地球科学, 2013, 43(10): 1607-1620.
ZHANG Peizheng, DENG Qidong, ZHANG Zhuqi, et al. Active faults, earthquake hazards and associated geodynamic processes in continental China[J]. Scientia Sinica Terrae, 2013, 43: 1607-1620.
[19]田文通, 孙军杰, 王兰民, 等. 黄土动力学研究进展与前缘科学问题[J]. 岩土工程学报, 2015, 37(11): 2119-2127.
TIAN Wentong, SUN Junjie, WANG Lanmin, et al. Research progress and frontier scientific problems in loess dynamics[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2119-2127.
[20]张振中, 王兰民. 1920年海源地震时的黄土地质灾害[M]. 乌鲁木齐:新疆科技出卫生版社, 1994.
ZHANG Zhenzhong, WANG Lanmin. Loess geological disaster during 1920 Haiyuan earthquake[M]. Urumqi:Xinjiang Science and Technology Health Press, 1994.
[21]慕焕东, 邓亚虹, 彭建兵. 西安地区地裂缝带黄土动力特性试验研究[J]. 工程地质学报, 2014, 22(5): 951-957.
MU Huangdong, DENG Yahong, PENG Jianbing. Experimental research on loess dynamic characteristics at ground fissure belt in Xi'an area[J]. Journal of Engineering Geology, 2014, 22(5): 951-957.
[22]王谦, 马金莲, 马海萍,等. 饱和黄土动剪切模量和阻尼比的试验研究[J]. 岩石力学与工程学报, 2019,38(9):1919-1927.
WANG Qian, MA Jinlian, MA Haiping, et al. Dynamic shear modulus and damping ratio of saturated loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(9): 1919-1927.
[23]代倩, 廖红建, 康孝森,等. 动荷载下填方体压实黄土动应变与动孔压变化规律研究[J]. 岩土工程学报, 2021, 43(S1): 235-240.
DAI Qian, LIAO Hongjian, KANG Xiaosen, et al. Behaviors of dynamic strain and pore pressure of compacted loess in loess-filled foundation induced by dynamic loading[J]. Chinese Journal of Geotechnical Engineering, 2021,43(S1):235-240.
[24]李帅, 王家鼎, 李承霖,等.循环荷载下黄土的动力特性试验研究及微观结构分析[J]. 干旱区资源与环境, 2021, 35(12): 142-149.
LI Shuai, WANG Jiading, LI Chenglin, et al. Dynamic characteristics and microstructure of loess under cyclic loading[J]. Journal of Arid Land Resources and Environment, 2021,35(12):142-149.
[25]AZIZKANDI A S, GHAVAMI S, BAZIAR M H, et al. Assessment of damages in fault rupture-shallow foundation interaction due to the existence of underground structures[J]. Tunnelling & Underground Space Technology, 2019, 89(JUL.):222-237.
[26]CHERMAHINI A G, TAHGHIGHI H. Numerical finite element analysis of underground tunnel crossing an active reverse fault: a case study on the Sabzkouh segmental tunnel[J]. Geomechanics and Geoengineering, 2019, 14(3):155-166.
[27]MEHDI G,HASLINDA N,ZAINUDDIN M Y, et al. A novel experimental study on the E_ects of soil and faults' properties on tunnels induced by normal and reverse faults[J].Applied Science,2020,10,3969
[28]PURI V K. Liquefaction behavior and dynamic properties of loessial(silty)soils[D]. Missouri: University of Missouri-Rolla, 1984.
[29]田西堂. 西安东部黄土断层活动性与显微结构的相关性[J]. 地质论评, 1993(2): 149-155,190-191.
TIAN Xitang. The relation between fault activity and microstructure in loess east of Xi'an[J]. Geological Review, 1993(2):149-155,190-191.
[30]王峻, 王谦, 王平,等. 粉煤灰掺入量对改性黄土动本构关系的影响[J]. 岩土工程学报, 2013, 35(S1): 156-160.
WANG Jun,WANG Qian,WANG Ping,et al. Effect of adding amount of fly ash on dynamic constitutive relationship of modified loess[J]Chinese Journal of Geotechnical Engineering,2013,35(S1):156-160.
[31]李广信. 高等土力学[M]. 北京:清华大学出版社, 2012.
LI Guangxin. Advanced soil mechanics[M]. Beijing:Tsinghua University Press, 2012.

备注/Memo

备注/Memo:
收稿日期:2023-03-01修回日期:2024-02-27
基金项目:国家自然科学基金(41977231)
第一作者:刘妮娜(1975—),女,博士,教授,主要从事岩土工程研究.E-mail:dcdgx16@chd.edu.cn
通信作者:温 凯(1999—),男,硕士生,主要从事岩土工程研究.E-mai:2021126112@chd.edu.cn
更新日期/Last Update: 2024-08-28