[1]滕佳男,苏何先,潘文,等.木结构榫卯节点抗震性能及加固试验分析[J].西安建筑科技大学学报(自然科学版),2024,56(05):773-781.[doi:10.15986.j.1006-7930.2024.05.016]
 TENG Jianan,SU Hexian,PAN Wen,et al.Seismic performance and reinforcement test analysis of wood structure mortise and tenon joints[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(05):773-781.[doi:10.15986.j.1006-7930.2024.05.016]
点击复制

木结构榫卯节点抗震性能及加固试验分析
()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
56
期数:
2024年05期
页码:
773-781
栏目:
出版日期:
2024-10-28

文章信息/Info

Title:
Seismic performance and reinforcement test analysis of wood structure mortise and tenon joints
文章编号:
1006-7930(2024)05-0773-09
作者:
滕佳男12苏何先12潘文12朱传伟12
(1昆明理工大学 建筑工程学院,云南 昆明 650500; 2云南省抗震工程技术研究中心,云南 昆明 650500)
Author(s):
TENG Jianan12 SU Hexian12 PAN Wen12 ZHU Chuanwei12
(1School of Civil Engineering, Kunming University of Science and Technology, Kunming 650500, China; 2Yunnan Seismic Engineering Technology Research Center, Kunming 650500, China)
关键词:
加固方式卯榫节点低周反复荷载试验性能需求
Keywords:
reinforcement method mortise and tenon joints low cycle repeated load test performance requirements
分类号:
TU366
DOI:
10.15986.j.1006-7930.2024.05.016
文献标志码:
A
摘要:
不同类型榫卯节点的加固方式应根据其具体破坏模式来选择,为探究不同加固方式与榫卯节点类型的适宜性,采用多阶屈曲阻尼器、伸臂式金属阻尼器、钢条分别对透榫节点、燕尾榫节点、半榫节点进行加固,通过开展加固与未加固榫卯节点低周反复荷载试验,并对比分析了榫卯节点的破坏特征、水平承载力、刚度和耗能能力.试验结果表明:各加固方式均能有效抑制节点拔榫、增加节点耗能、提升节点最大承载力和刚度等抗震性能指标,但各加固方式效率及对节点性能影响差异明显.其中,多阶屈曲阻尼器、伸臂式金属阻尼器和钢条加固节点的最大承载能力较未加固节点分别提高了467%、496%、203%;加固节点的初始刚度分别提高了145%、426%、221%;多阶屈曲阻尼器可显著增强透榫节点的耗能能力且对其承载力和初始刚度影响有限;伸臂式金属阻尼器可大幅提升燕尾榫节点的初始刚度和最大承载力,有效避免出现榫颈和榫角断裂;钢条加固方式在有效抑制半榫节点的拔榫的同时能有效提升节点刚度和承载力.可见,不同类型榫卯节点应根据性能需求选用适宜的加固方式并对加固参数进行合理化设计.
Abstract:
In order to explore the suitability of different reinforcement methods and types of mortise and tenon joints, multistage buckling dampers, extendedarm metal dampers and steel bars are used to reinforce transparent tenon joints, dovetail tenon joints and halftenon joints respectively.. Through the low cyclic loading test of reinforced and unreinforced mortisetenon joint, the failure characteristics, horizontal bearing capacity, stiffness and energy dissipation capacity of mortisetenon joint are compared and analyzed. The test results show that each reinforcement method can effectively restrain the joint pulling tenon, increase the energy consumption of the joint, improve the maximum bearing capacity and stiffness of the joint and other seismic performance indexes, but the efficiency and influence of each reinforcement method on the performance of the joint are different. Among them, the maximum bearing capacity of the multistage buckling damper, the metal damper with the extension arm and the steel bar reinforced node is increased by 467%, 444% and 244%, respectively, compared with the unreinforced node. The initial stiffness of the reinforced joints is increased by 145%, 426% and 221%, respectively. The multistage buckling damper can significantly enhance the energy dissipation capacity of the joint and has limited influence on its bearing capacity and initial stiffness. The metal damper can greatly increase the initial stiffness and maximum bearing capacity of the dovetail joint, and effectively avoid the fracture of the joint neck and corner. The steel bar reinforcement method can effectively restrain the pulling of the halftenon joint and improve the stiffness and bearing capacity of the joint. It can be seen that different types of mortise and tenon joints should be selected according to the performance requirements of the appropriate reinforcement methods and rational design of reinforcement parameters.

参考文献/References:

[1]陆伟东,邓大利,居兴鹏,等.中国木结构建筑分布及其震害[J].西安建筑科技大学学报(自然科学版), 2011, 43(4): 464469.
LU Weidong, DENG Dali, JU Xingpeng, et al. Distribution and earthquake damage of wooden buildings in China [J]. J. Xi′an Univ. of Arch. & Tech. (Natural Science Edition), 2011, 43(4): 464469.
[2]FILIATRAULT A, STIEDA C K A. Seismic weaknesses of some residential wood framed buildings: Confirmations from the 1994 Northridge earthquake[J]. Canadian Journal of Civil Engineering, 1995, 22(2): 403414.
[3]潘文,薛建阳,白羽,等.土木结构民居抗震性能及加固设计方法[M].北京:科学出版社,2017.
PAN Wen, XUE Jianyang, BAI Yu, et al. Seismic performance and reinforcement design method of civil structure residential buildings [M]. Beijing: Science Press, 2017.
[4]高永武,高杰,王东明.云南漾濞6.4级地震木构架房屋震害调查与分析[J].世界地震工程,2021,37(4):4652.
GAO Yongwu, GAO Jie, WANG Dongming. Investigation and analysis of earthquake damage of wooden frame houses in Yangbi M6.4 earthquake in Yunnan province [J]. World Earthquake Engineering, 2021, 37(4): 4652.
[5]许涛.拔榫状态下透榫节点连接性能研究[D].唐山:河北联合大学, 2013.
XU Tao. Research on joint performance of transparent tenon joint under untenon [D]. Tangshan: Hebei United University, 2013.
[6]田鹏刚,张风亮.古建筑木结构震害分析及加固研究[J].世界地震工程,2014,30(3):126133.
TIAN Penggang, ZHANG Fengliang. Seismic damage analysis and reinforcement research of ancient wooden structures [J]. World Earthquake Engineering, 2014,30(3): 126133.
[7]叶阳,明小娜,卢永坤, 等.漾濞6.4级地震大理地区穿斗木结构震害分析及加固措施[J].世界地震工程, 2021, 37(4): 2837.
YE Yang, MING Xiaona, LU Yongkun, et al. Yangbi 6.4 earthquake damage analysis and strengthening measures of wooden structure in Dali area[J]. World Earthquake Engineering, 2021, 37(4): 2837.
[8]姚侃,赵鸿铁,葛鸿鹏.古建木结构榫卯连接特性的试验研究[J]. 工程力学, 2006(10): 168173.
YAO Kan, ZHAO Hongtie, GE Hongpeng. Experimental studies on the characteristic of mortisetenon joint in historic timber buildings[J]. Engineering Mechanics,2006(10): 168173.
[9]杨勇,李辉,鲍子虞,等.粘贴钢板加固裂损木梁受力性能试验研究[J].西安建筑科技大学学报(自然科学版),2016,48(2):171177.
YANG Yong, LI Hui, BAO Ziyu, et al. Experimental study on the mechanical performance of cracked wood beams reinforced with bonded steel plates [J]. J. Xi′an Univ. of Arch. & Tech. (Natural Science Edition), 2016,48(2): 171177.
[10]薛自波.古建筑木结构燕尾榫节点加固试验研究[D].西安: 西安建筑科技大学,2010.
XUE Zibo. Experimental study on strengthening dovetail joint of ancient wooden structure [D]. Xi′an: Xi′an Univ. of Arch. & Tech., 2010.
[11]谢启芳,赵鸿铁,薛建阳,等.中国古建筑木结构榫卯节点加固的试验研究[J].土木工程学报,2008(1):2834.
XIE Qifang, ZHAO Hongtie, XUE Jianyang, et al. Experimental study on strengthening of mortise and tenon joints of ancient wooden structures in China [J]. Journal of Civil Engineering, 2008(1): 2834.
[12]周乾,闫维明,李振宝,等.马口铁加固古建筑榫卯节点抗震试验[J].文物保护与考古科学,2011,23(4): 1725.
ZHOU Qian, YAN Weiming, LI Zhenbao, et al. Seismic test of tinplate reinforced mortise and tenon joints of ancient buildings[J]. Cultural Relics Conservation and Archaeological Science, 2011,23(4): 1725.
[13]周乾, 闫维明,李振宝, 等.古建筑木结构加固方法研究[J].工程抗震与加固改造, 2009, 31(1): 8490.
ZHOU Qian, YAN Weiming, LI Zhenbao, et al. Research on reinforcement methods for ancient wooden structures[J]. Engineering Seismic Resistance and Reinforcement Renovation, 2009, 31(1): 8490.
[14]陈庆军,李冰州,陈奕年,等.雀替型阻尼器加固箍头榫木框架结构的抗震性能[J].华南理工大学学报(自然科学版),2023,51(4):920.
CHEN Qingjun, LI Bingzhou, CHEN Yinian, et al. Seismic performance of Queti type dampers reinforced hoop tenon wood frame structures [J]. Journal of South China University of Technology (Natural Science Edition), 2023,51(4): 920.
[15]GANGARAO H, SONTI S S, SUPERFESKY M C. Static response of wood crossties reinforced with composite fabrics[J]. International Society of the A Advancement of Materials and Process Engineering Symposium and Exhibition, 1996(41): 12911303.
[16]PLEVRIS N, TRIANTAFILLOU T C. FRPreinforced wood as structural material[J]. Journal of Materials in Civil Engineering, 1992, 4(3): 300317.
[17]JOHNS K C, LACROIX S. Composite reinforcement of timber in bending[J]. Canadian Journal of Civil Engineering, 2000, 27(5): 899906.
[18]XUE J, WU C, ZHANG X, et al. Experimental study on seismic behavior of mortisetenon joints reinforced with shape memory alloy[J]. Engineering Structures, 2020, 218: 110839.
[19]XUE J, WU C, ZHANG X, et al. Effect of pretension in superelastic shape memory alloy on cyclic behavior of reinforced mortisetenon joints[J]. Construction and Building Materials, 2020, 241: 118136.
[20]TANNERT T, LAM F. Selftapping screws as reinforcement for rounded dovetail connections[J]. Structural Control and Health Monitoring, 2009, 16(3): 374384.
[21]YI D, FAN Y, PAN Y, et al. Seismic behavior of predamaged mortiseandtenon joints reinforced using viscoelastic dampers[J]. Journal of Structural Engineering, 2023, 149(9): 04023124.


备注/Memo

备注/Memo:
收稿日期:20240102修回日期:20240702
基金项目:国家重点研发计划(2020YFD110070304);云南省教育厅科学研究基金(2021J0062)
第一作者:滕佳男(2000—),男,硕士生,主要从事结构减震研究.Email:2272915008@qqcom
通信作者:苏何先(1982—),男,博士,高级实验师,主要从事减震隔震研究.Email:sxhh870@kusteducn

更新日期/Last Update: 2024-11-22