[1]郝贠洪,吴日根,包媛媛,等.复杂环境下隆盛庄古建青砖劣化机理与剩余寿命预测[J].西安建筑科技大学学报(自然科学版),2024,56(05):690-700.[doi:10.15986.j.1006-7930.2024.05.007]
 HAO Yunhong,WU Rigen,BAO Yuanyuan,et al.Deterioration mechanism and residual life prediction of ancient grey bricks in Longshengzhuang under complex environment[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(05):690-700.[doi:10.15986.j.1006-7930.2024.05.007]
点击复制

复杂环境下隆盛庄古建青砖劣化机理与剩余寿命预测
()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
56
期数:
2024年05期
页码:
690-700
栏目:
出版日期:
2024-10-28

文章信息/Info

Title:
Deterioration mechanism and residual life prediction of ancient grey bricks in Longshengzhuang under complex environment

文章编号:
1006-7930(2024)05-0690-11
作者:
郝贠洪123吴日根4包媛媛1阿斯哈123王利辉123侯智国5丰五岩6
(1内蒙古工业大学 土木工程学院,内蒙古 呼和浩特 010051;2内蒙古自治区建筑检测鉴定与安全评估工程技术研究中心,内蒙古 呼和浩特 010051;
3内蒙古自治区土木工程结构与力学重点试验室,内蒙古 呼和浩特 010051;4内蒙古工业大学 理学院,内蒙古 呼和浩特 010051;
5内蒙古建筑职业技术学院,内蒙古 呼和浩特 010070;6内蒙古宏盛建设集团有限公司 内蒙古 呼和浩特 010020)


Author(s):
(1School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, China;
2Inner Mongolia Autonomous Region Construction Testing, Identification and
Safety Assessment Engineering Technology Research Center, Hohhot 010051, China;
3Inner Mongolia Autonomous Region Key Laboratory of Civil Engineering
Structure and Mechanics, Hohhot 010051, China;
4College of Science, Inner Mongolia University of Technology, Hohhot 010051, China;
5Inner Mongolia Technical College of Construction, Hohhot 010070, China;
6Inner Mongolia Hongsheng Construction Group Co., Ltd., Hohhot 010020, China)


关键词:
复杂环境古建青砖劣化机理剩余寿命预测
Keywords:
complex environment ancient building grey brick deterioration mechanism residual life prediction
分类号:
TU522.1
DOI:
10.15986.j.1006-7930.2024.05.007
文献标志码:
A
摘要:
隆盛庄古镇是我国首批传统村落及第六批中国历史文化名镇,位于内蒙古乌兰察布丰镇市东北部,是历史悠久的蒙汉文化交融的商贸关口.古镇内现存大量以青砖为主要建筑材料的古建筑,在当地自然环境影响下古建青砖产生了严重的劣化现象,影响古建筑的安全性和耐久性. 针对隆盛庄古镇复杂环境开展青砖的耐久性研究工作,研究结果表明:隆盛庄严寒气候与盐渍土环境是造成古建青砖劣化的两个主要环境因素,古建青砖劣化原因以冻融循环作用为主,可溶盐的存在加快了青砖的劣化速度;05可靠度水平清水冻融、基准浓度盐溶液冻融、10倍基准浓度盐溶液冻融下青砖的耐久性寿命分别为96、90、75次循环;隆盛庄自然环境下,通过小样本预测古建青砖的剩余寿命在43年及以上的占比为77%,除部分损伤较为严重的古建青砖需要修复或替换,剩余大部分可以继续使用.
Abstract:
The grey brick materials of Longshengzhuang ancient buildings have been seriously deteriorated under the influence of the local natural environment. The serious deterioration of grey bricks will affect the safety and durability of ancient buildings. Aiming at the cold-saline environment of Longshengzhuang, the composite salt freeze-thaw cycle test of grey bricks was carried out to study the deterioration mechanism of grey bricks, and the B-S distribution model was used to predict the remaining life of ancient grey bricks in Longshengzhuang. The results show that under the action of composite salt freeze-thaw cycles, due to the accumulation of corrosive substances inside the grey brick in the early stage of the test, the loss rates of the quality, compressive strength and relative dynamic elastic modulus of the grey brick increase first and then decrease with the increase of the number of cycles, and the degradation rate of the grey brick increases with the increase of the concentration of soluble salt. The main reason for the deterioration of the ancient grey bricks in Longshengzhuang is the freeze-thaw cycle, and the existence of soluble salt accelerates the deterioration rate of the grey bricks. The B-S distribution model can better describe the degradation process of each macroscopic index of grey brick. Under the reliability level of 0.5, the life of grey brick under A, B and C conditions is 96, 90 and 75 cycles, respectively. In the natural environment of Longshengzhuang, the proportion of the remaining life of the ancient building blue bricks predicted by a small sample of 43 years and above is 77 %. The research results can provide a scientific basis for the protection and repair of ancient buildings

参考文献/References:

[1]薛建阳, 宋德军, 吴晨伟, 等. 角科斗栱轴压与抗震性能试验研究及数值分析[J]. 建筑结构学报, 2024, 45(3): 174186.
XUE Jianyang, SONG Dejun, WU Chenwei, et al. Experimental study and numerical analysis of axial compression and seismic performance of Jiaoke Dougong [J]. Journal of Building Structures, 2024,45(3): 174186.
[2]李爱群, 周坤朋, 王崇臣, 等. 中国古建筑木结构修复加固技术分析与展望[J]. 东南大学学报(自然科学版), 2019, 49(1): 195206.
LI Aiqun, ZHOU Kunpeng, WANG Chongchen, et al. Analysis and prospect of repair and reinforcement technology of Chinese ancient timber structures [J]. Journal of Southeast University (Natural Science Edition), 2019, 49(1): 195206.
[3]薛建阳, 翟磊, 张风亮, 等. 扁钢加固古建筑木结构残损节点的性能分析与设计方法[J]. 西安建筑科技大学学报(自然科学版), 2015, 47(5): 621625.
XUE Jianyang, ZHAI Lei, ZHANG Fengliang, et al. Performance analysis and design method of damaged joints of ancient timber structures strengthened with flat steel [J]. J. Xi′an Univ. of Arch. & Tech. (Natural Science Edition), 2015,47(5): 621625.
[4]薛建阳, 浩飞虎. 应县木塔倾斜及扭转分析[J]. 西安建筑科技大学学报(自然科学版), 2019, 51(2): 212218.
XUE Jianyang, HAO Feihu. Inclination and torsion analysis of Yingxian wooden pagoda [J]. J. Xi′an Univ. of Arch. & Tech. (Natural Science Edition), 2019, 51(2): 212218.
[5]薛建阳, 董金爽, 夏海伦, 等. 不同松动程度下古建筑木结构透榫节点弯矩转角关系分析[J]. 西安建筑科技大学学报(自然科学版), 2018, 50(5): 638644.
XUE Jianyang, DONG Jinshuang, XIA Hailun, et al. Analysis of momentrotation relationship of mortisetenon joints of ancient timber structures under different loosening degrees [J]. J. Xi′an Univ. of Arch. & Tech. (Natural Science Edition), 2018, 50(5): 638644.
[6]胡卫兵, 杨佳, 吴严辉, 等. 交通荷载作用下古建筑木结构柱顶水平速度计算研究[J]. 西安建筑科技大学学报(自然科学版), 2019, 51(3): 315320.
HU Weibing, YANG Jia, WU Yanhui, et al. Study on the calculation of horizontal velocity at the top of ancient timber structure under traffic load [J]. J. Xi′an Univ. of Arch. & Tech. (Natural Science Edition), 2019, 51(3): 315320.
[7]李静, 李雪婷, 王菊琳, 等. 古建筑琉璃瓦抗冻融性影响因素探究[J]. 西安建筑科技大学学报(自然科学版), 2023, 55(5): 697703.
LI Jing, LI Xueting, WANG Julin, et al. Factors affecting the freezethaw resistance of glazed tiles in ancient buildings [J]. J. Xi′an Univ. of Arch. & Tech. (Natural Science Edition), 2023, 55(5): 697703.
[8]郭国梁, 张道明, 吕春, 等. 冻融循环对卜奎清真寺古青砖力学性能影响的试验研究[J]. 科学技术与工程, 2021, 21(20): 86388643.
GUO Guoliang, ZHANG Daoming, LV Chun, et al. Experimental study on the effect of freezethaw cycle on the mechanical properties of ancient gray bricks of Bukui Mosque[J]. Science Technology and Engineering, 2021, 21(20): 86388643.
[9]STRYSZEWSKA T, KAN'KA S. Forms of damage of bricks subjected to cyclic freezing and thawing in actual conditions[J]. Materials, 2019, 12(7): 1165.
[10]ZHAO P, LEI Q, ZHANG X, et al. Durability and life prediction of Chinese traditional black bricks under freezing and thawing conditions [J]. Revista Romana de Materiale, 2019, 49(1): 157166.
[11]郝贠洪, 何丹丹, 吴日根, 等. 内蒙古中部隆盛庄古建筑青砖墙体冻害损伤研究[J]. 硅酸盐通报, 2022, 41(7): 24382446,2473.
HAO Yunhong, HE Dandan, WU Rigen, et al. Study on frost damage damage of gray brick wall of ancient building Longshengzhuang in central Inner Mongolia[J]. Bulletin of the Chinese Ceramics, 2022, 41(7): 24382446, 2473.
[12]张中俭. 平遥古城古砖风化机理和防风化方法研究[J]. 工程地质学报,2017,25(3): 619629.
ZHANG Zhongjian. Study on the weathering mechanism and antiweathering methods of ancient bricks in Pingyao ancient city [J]. Engineering Geology, 2017, 25(3): 619629.
[13]袁玉卿, 张震, 王夏伟, 等. 盐蚀对开封城墙仿制砖抗压强度影响[J].河南大学学报(自然科学版), 2022, 52(1): 95101.
YUAN Yuqing, ZHANG Zhen, WANG Xiawei, et al. Effect of salt erosion on the compressive strength of imitation bricks of Kaifeng city wall[J]. Journal of Henan University (Natural Science Edition), 2022, 52(1): 95101.
[14]ZHAO P, HUAN W J, ZHANG Y S. Corrosion mechanism of clay brick exposed to sulfate attack under the condition of dryingwetting cycles and mechanical loading[J]. International Journal of Earth Sciences and Engineering, 2015, 256263.
[15]蔡晓琛, 孙莉莉, 万俐, 等. 明城墙微生物调查及微型藻类腐蚀城墙效应探究[J]. 文物保护与考古科学, 2016, 28(2): 4452.
CAI Xiaochen, SUN Lili, WAN Li, et al. Microbial investigation of the Ming city wall and the effect of microalgal corrosion on the city wall [J]. Protection of Cultural Relics and Archaeological Science, 2016,28(2): 4452.
[16]冯楠. 潮湿环境下砖石类文物风化机理与保护方法研究[D]. 长春: 吉林大学, 2011.
FENG Nan. Study on the weathering mechanism and protection methods of brick and stone cultural relics in humid environment [D]. Changchun: Jilin University, 2011.
[17]COUNTINHO M L, MILLER A Z, MACEDO M F. Biological colonization and biodeterioration of architectural ceramic materials: An overview[J]. Journal of Cultural Heritage, 2015, 16(5): 759777.
[18]赵鹏. 荷载与环境作用下青砖及其砌体结构的损伤劣化规律与机理[D]. 南京: 东南大学, 2016.
ZHAO Peng. Damage and deterioration law and mechanism of grey brick and its masonry structure under load and environment[D]. Nanjing: Southeast University, 2016.
[19]王卓男. 隆盛庄建筑纪实: 以点云数据记录名镇[M]. 北京:中国建筑工业出版社, 2019.
WANG Zhuonan. Longshengzhuang architectural documentary: Recording famous towns with point cloud data[M]. Beijing: China Building Industry Press, 2019.
[20]POWERS T C. A working hypothesis for further studies of frost resistance of concrete[J]. Journal of the American Concrete Institute, 1945, 16(4): 245272.
[21]BIRNBAUM Z W, SAUNDERS S C. A new family of life distributions[J]. Journal of Applied Probability, 1969, 6(2): 319327.
[22]LU C G, WEI Z Q, QIAO H X, et al. BirnbaumSaunders durability life prediction model of siteexposed concrete in the saline soil area[J]. Advances in Civil Engineering, 2021: 113.
[23]LU C G, WEI Z Q, QIAO H X, et al. Multidamage accelerated life test based on the BirnbaumSaunders reliability evaluation model[J]. Journal of Asian Architecture and Building Engineering, 2023, 22(1): 226239.


备注/Memo

备注/Memo:
收稿日期:20240430修回日期:20240905
基金项目:国家自然科学基金(12272190,11862022)
第一作者:郝洪(1977—),男,博士,教授,正高级工程师,主要从事区域特殊环境下工程材料、结构损伤及防护关键技术研究. Email:13947133205@163com

更新日期/Last Update: 2024-11-22