[1]韩宜丹,淳庆.基于CFD数值模拟的古建筑群风场特性研究——以北京故宫建筑群为例[J].西安建筑科技大学学报(自然科学版),2024,56(05):650-659.[doi:10.15986.j.1006-7930.2024.05.003]
 HAN Yidan,CHUN Qing.Study on wind field characteristics of ancient building group by CFD simulation——A case of the Forbidden City in Beijing[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(05):650-659.[doi:10.15986.j.1006-7930.2024.05.003]
点击复制

基于CFD数值模拟的古建筑群风场特性研究——以北京故宫建筑群为例()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
56
期数:
2024年05期
页码:
650-659
栏目:
出版日期:
2024-10-28

文章信息/Info

Title:
Study on wind field characteristics of ancient building group by CFD simulation——A case of the Forbidden City in Beijing
文章编号:
1006-7930(2024)05-0650-10
作者:
韩宜丹淳庆
东南大学 建筑学院,江苏 南京 210018
Author(s):
HAN Yidan CHUN Qing
(School of Architecture, Southeast University, Nanjing 210018, China)
关键词:
CFD数值模拟故宫建筑群平均风压系数风环境模拟
Keywords:
CFD numerical simulation the Forbidden City building group mean wind pressure coefficient wind environment simulation
分类号:
TU398
DOI:
10.15986.j.1006-7930.2024.05.003
文献标志码:
A
摘要:
为研究我国古建筑群风场特性评估方法,基于计算流体动力学方法(Computational Fluids Dynamics,CFD),以北京故宫建筑群为例,通过对不同风向角工况下的故宫建筑群进行CFD数值模拟,获得全域流场信息,包括故宫中轴线主要建筑的表面风压分布情况、以及故宫建筑群环境风速分布情况.研究揭示了故宫建筑群内不同风向角下主要建筑表面的风压分布规律、中轴线建筑的不利风向角,并基于风环境评估理论对故宫建筑群内的行人风环境舒适性和安全性进行评估.研究结果表明:风压分布大致呈东西和南北对称分布形态;迎风面受较大正风压,侧风和背风面受较大负风压,负风压主要集中在靠近屋脊和墙面转角等气流分离区;主要建筑表面的正风压系数最值达10,负风压系数最值达22;六座大殿所受竖直方向的升力系数极值接近8,是水平方向的2倍;在水平和竖直方向上风压合力在斜风向下较大,其中在120°时的三向风压合力均达到极值;环境最大风速比在3~6之间,斜风向的最大风速比较大;垂直风向下,风速放大效应较弱,其中正南和正北风放大效应最弱,北京地区的主导风向是故宫建筑群的最优风向.研究成果可以为故宫建筑群的结构抗风保护以及行人防风措施提供科学依据和指导.


Abstract:
The study reveals the wind pressure characteristics of the main building surface and the unfavorable wind direction for the central axis buildings, and evaluates the comfort and safety of pedestrian wind environment based on the wind environment assessment theory. The results show that the distribution of wind pressure roughly follows a symmetrical pattern of eastwest and northsouth distribution. The windward surface is subject to positive wind pressure, while the crosswind and leeward surfaces are subject to negative wind pressure. The negative wind pressure is mainly concentrated in the airflow separation area near the roof ridge and the corner of the wall. The maximum positive and negative wind pressure coefficients of main building surface are 10 and 22, respectively. The extreme lift coefficient in the vertical direction is close to 8, which is twice as high as that in the horizontal direction. The force coefficients are larger under the oblique wind direction, and reach the extreme values at 120°. The maximum wind speed ratio of the environment is between 3 and 6, and the maximum wind speed of the oblique wind direction is larger. The wind speed amplification effects are weak under vertical wind directions, among which the north and south wind amplification effect are the weakest. The dominant wind direction in Beijing is the favorable wind direction for the Forbidden City. The results can provide scientific basis and guidance for the structural protection of buildings and pedestrian protection measures of the Forbidden City building group in view of wind resistance.

参考文献/References:

[1]单霁翔. 《故宫保护总体规划》的意义及实施对策[J]. 故宫博物院院刊, 2015(5): 616, 156.
SHAN Jixiang. The significance and implementation countermeasures of the general plan for the protection of the Forbidden City[J]. Journal of the Palace Museum, 2015(5): 616, 156.
[2]周乾, 闫维明, 关宏志. 故宫太和殿结构现状数值模拟研究[J]. 建筑结构, 2015, 45(6): 6670, 79.
ZHOU Qian, YAN Weiming, GUAN Hongzhi. Numerical simulation study on the structural condition of the Hall of Supreme Harmony in the Forbidden City[J]. Building Structure, 2015, 45(6): 6670, 79.
[3]淳庆, 张剑葳, 赵鹏, 等. 故宫灵沼轩残损分析及结构性能研究[J]. 文物保护与考古科学, 2018, 30(1): 4046.
CHUN Qing, ZHANG Jianwei, ZHAO Peng, et al. Damage analysis and structural performance study of Lingzhaoxuan in the Forbidden City[J]. Sciences of Conservation and Archaeology, 2018, 30(1): 4046.
[4]周乾. 故宫灵沼轩结构抗震分析研究[J]. 水利与建筑工程学报, 2015, 13(2): 7885.
ZHOU Qian. Seismic analysis of the structure of Lingzhaoxuan in the Forbidden City[J]. Journal of Water Resources and Architectural Engineering, 2015, 13(2): 7885.
[5]周乾. 紫禁城古建筑的传统防震方法[J]. 工业建筑, 2019, 49(6): 210217.
ZHOU Qian. Traditional seismic methods of ancient buildings in the Forbidden City[J]. Industrial Construction, 2019, 49(6): 210217.
[6]周乾. 基于构造特征的故宫太和殿抗震性能分析[J]. 建筑技术, 2022, 53(3): 281284.
ZHOU Qian. Seismic performance analysis of the Hall of supreme harmony in the Forbidden City based on structural characteristics[J]. Architecture Technology, 2022, 53(3): 281284.
[7]盛守刚. 明代重檐盝顶殿堂式结构抗震性能研究[D]. 哈尔滨:中国地震局工程力学研究所, 2018.
SHENG Shougang. Seismic performance study of Ming dynasty DoubleEave HallStyle structures[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2018.
[8]周乾, 闫维明, 杨娜, 等. 故宫灵沼轩风振响应分析[J]. 文物保护与考古科学, 2016, 28(3): 5564.
ZHOU Qian, YAN Weiming, YANG Na, et al. Analysis of windinduced vibration response of Lingzhaoxuan in the Forbidden City[J]. Sciences of Conservation and Archaeology, 2016, 28(3): 5564.
[9]中华人民共和国住房和城乡建设部. 建筑结构荷载规范:GB50009—2012[J]. 北京: 中国建筑工业出版社, 2012.
Ministry of Housing and UrbanRural Development of the People′s Republic of China. Load code for the design of building structures: GB50009—2012[J]. Beijing: China Architecture & Building Press, 2012.
[10]单文姗. 殿堂式中国古建筑屋面风荷载特性[D]. 北京:北京交通大学, 2017.
SHAN Wenshan. Wind load characteristics of roofs of HallStyle Chinese ancient buildings[D]. Beijing: Beijing Jiaotong University, 2017.
[11]吴仁伟, 彭兴黔. 圆形土楼屋盖风荷载的数值模拟分析[J]. 华侨大学学报(自然科学版), 2011, 32(4): 427432.
WU Renwei, PENG Xingqian. Numerical simulation analysis of wind loads on roofs of circular earth buildings[J]. Journal of Huaqiao University (Natural Science), 2011, 32(4): 427432.
[12]韩宜丹. 江南地区传统木构建筑风振性能研究[D]. 南京:东南大学, 2018.
HAN Yidan. Study on windinduced vibration performance of traditional timber structures in Jiangnan Region[D]. Nanjing: Southeast University, 2018.
[13]李雨航, 邓扬, 李爱群, 等. 中式高耸古木塔风压分布与体型系数风洞试验研究[J]. 工程力学, 2021, 38(10): 6473.
LI Yuhang, DENG Yang, LI Aiqun, et al. Wind pressure distribution and shape coefficient study of tall ancient timber pagodas in China using wind tunnel tests[J]. Engineering Mechanics, 2021, 38(10): 6473.
[14]李雨航, 邓扬, 李爱群, 等. 应县木塔风压分布的风洞试验与CFD模拟研究[J]. 建筑结构学报, 2022, 43(3): 8191.
LI Yuhang, DENG Yang, LI Aiqun, et al. Wind pressure distribution of Yingxian timber pagoda: Wind tunnel tests and CFD simulation study[J]. Journal of Building Structures, 2022, 43(3): 8191.
[15]闫晓曦. 苏州古城内古建筑修复改造风环境技术研究[D]. 苏州:苏州科技大学, 2017.
YAN Xiaoxi. Technical study on wind environment for restoration and renovation of ancient buildings in the ancient city of Suzhou[D]. Suzhou: Suzhou University of Science and Technology, 2017.
[16]易晓列. 广州建筑遗产防火防风性能评估及预防性保护[D]. 广州:华南理工大学, 2022.
YI Xiaolie. Evaluation and preventive protection of fire and wind performance of architectural heritage in Guangzhou[D]. Guangzhou: South China University of Technology, 2022.
[17]HAN Y D, CHUN Q, XU X, et al. Wind effects on Chinese traditional timber buildings in complex terrain: The case of Baoguo Temple[J]. Journal of Building Engineering, 2022, 59: 105088.
[18]张佳敏, 姚珊珊, 吕红医, 等. 基于风环境分析的木构建筑遗产保护研究——以初祖庵大殿为例[J]. 自然与文化遗产研究, 2023, 8(1): 7180.
ZHANG Jiamin, YAO Shanshan, LV Hongyi, et al. Protection study of timber building heritage based on wind environment analysis: A case study of the Main Hall of Chuzu Temple[J]. Research on Natural and Cultural Heritage, 2023, 8(1): 7180.
[19]FRANKE J, HELLSTEN A, SCHLNZEN H, et al. Best practice guideline for the CFD simulation of flows in the urban environment[J]. COST Action, 2007, 732: 51.
[20]TOMINAGA Y, MOCHIDA A, YOSHIE R, et al. AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10): 17491761.
[21]BLOCKEN B, ROELS S, CARMELIET J. Modification of pedestrian wind comfort in the Silvertop Tower passages by an automatic control system[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92(10): 849873.
[22]BLOCKEN B, JANSSEN W D, VAN HOOFF T. CFD simulation for pedestrian wind comfort and wind safety in urban areas: General decision framework and case study for the Eindhoven University campus[J]. Environmental Modelling & Software, 2012, 30: 1534.
[23]BLOCKEN B, MOONEN P, STATHOPOULOS T, et al. Numerical study on the existence of the venturi effect in passages between perpendicular buildings[J]. Journal of Engineering Mechanics, 2008, 134(12): 10211028.
[24]RICHARDS P J, HOXEY R P. Appropriate boundary conditions for computational wind engineering models using the kε turbulence model[C]//Computational Wind Engineering 1. Oxford: Elsevier, 1993: 145153.
[25]WIERINGA J. Updating the davenport roughness classification[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41(1): 357368.
[26]QUAN Y, TAMURA Y, MATSUI M, et al. TPU aerodynamic database for lowrise buildings[A]//Proceedings of the 12th International Conference on Wind Engineering. Cairns, Australia: Journal of Wind Engineering and Industrial Aerodynamics,2007: 16151622.
[27]BLOCKEN B, STATHOPOULOS T, CARMELIET J. CFD simulation of the atmospheric boundary layer: Wall function problems[J]. Atmospheric Environment, 2007, 41(2): 238252.
[28]罗凯文, 杨易, 谢壮宁. 基于kε模型模拟平衡态大气边界层的比较研究[J]. 工程力学, 2018, 35(2): 2129.
LUO Kaiwen, YANG Yi, XIE Zhuangning. Comparative study on the simulation of equilibrium atmospheric boundary layer based on the kε model[J]. Engineering Mechanics, 2018, 35(2): 2129.
[29]中华人民共和国住房和城乡建设部. 建筑工程风洞试验方法标准:JGJ/T 338—2014[J]. 北京: 中国建筑工业出版社, 2014.
Ministry of Housing and UrbanRural Development of the People′s Republic of China. Standard for wind tunnel test method in building engineering: JGJ/T 338—2014[J]. Beijing: China Architecture & Building Press, 2014.
[30]岳梦迪. 基于人行区域风环境的板式高层居住区优化设计研究[D]. 北京:北京建筑大学, 2020.
YUE Mengdi. Optimization design of slabtype highrise residential areas based on pedestrian wind environment[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2020.


备注/Memo

备注/Memo:
收稿日期:20240508修回日期:20240720
基金项目:国家自然科学基金(51778122);江苏省重点研发计划项目(BE2022833)
第一作者:韩宜丹(1993—),女,博士生,主要从事建筑遗产保护技术的研究. Email: hanhanyidan@gmailcom
通信作者:淳庆(1979—),男,教授,博士生导师,主要从事历史建筑保护、结构安全评估、既有建筑加固改造、木结构技术等研究. Email: cqnj1979@163com
更新日期/Last Update: 2024-11-21