[1]陈洁,杨柳,罗智星.吐鲁番地区居住建筑室内热环境研究[J].西安建筑科技大学学报(自然科学版),2019,51(04):578-583.[doi:10.15986/j.1006-7930.2019.04.016]
 CHEN Jie,YANG Liu,LUO Zhixing.Analysis of indoor thermal environment of residential buildings in Turpan[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(04):578-583.[doi:10.15986/j.1006-7930.2019.04.016]
点击复制

吐鲁番地区居住建筑室内热环境研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
51
期数:
2019年04期
页码:
578-583
栏目:
出版日期:
2019-08-30

文章信息/Info

Title:
Analysis of indoor thermal environment of residential buildings in Turpan
文章编号:
1006-7930(2019)04-0578-06
作者:
陈洁杨柳罗智星
(西安建筑科技大学 建筑学院,陕西 西安 710055)
Author(s):
CHEN Jie YANG Liu LUO Zhixing
(School of Architecture, Xian Univ. of Arch. & Tech., Xian 710055, China)
关键词:
干热气候内表面温度热环境测试IES
Keywords:
hot and dry climate inner surface temperature thermal environment testing IES
分类号:
TU111.4
DOI:
10.15986/j.1006-7930.2019.04.016
文献标志码:
A
摘要:
吐鲁番地区夏季极端干燥炎热,为了解沙漠干旱气候下居住建筑室内热环境状况及围护结构隔热性能,对室内空气温度、相对湿度及各朝向内表面温度进行测试,并采用理论计算与数值模拟方法,对多种围护结构热工条件下太阳辐射朝向差异对建筑隔热性能影响进行分析.结果表明:吐鲁番地区居住建筑室内热环境较差,满足热舒适与湿度要求时间比分别为15.8%、22.1%.在吐鲁番地区可通过控制室内蓄热改善室内热环境,当外围护结构热阻小于0.85 m2·K/W时,朝向差异对围护结构内表面温度影响显著,提高南向、东向围护结构热阻值可以有效改善室内热环境.为该地区建筑节能及热工设计优化提供参考
Abstract:
Turpan is extremely dry and hot in summer. In order to obtain the indoor thermal environment condition of residential buildings and the heat insulation performance of envelope structure under the dry climate condition, indoor air temperature, relative humidity and internal surface temperature of all orientations were tested. Theoretical calculation and numerical simulation were used to analyze the influence of solar radiation orientations on building insulation performance under various thermal conditions of envelope structures.Results show that the indoor thermal environment is poor, and the time ratio to meet the thermal comfort and humidity requirements is 15.8% and 22.1% respectively.In Turpan area, indoor thermal environment can be improved by controlling indoor heat storage. When the thermal resistance of the outer protective structure is less than 0.85 m2 ·k/w, the orientation difference has a significant impact on the inner surface temperature of the protective structure, and increasing the thermal resistance value of the south and east protective structure can improve the indoor thermal environment more economically and effectively.It provides reference for the improvement of indoor thermal environment and the optimization of thermal design in Turpan

参考文献/References:

[1]中国气象局气象信息中心气象资料室. 中国建筑热环境分析专用气象数据集[M]. 北京: 中国建筑工业出版社, 2005.

Meteorological Data Room of Meteorological Information Center of China Meteorological Bureau. China building thermal environment analysis special meteorological database [M].Beijing:China Architecture & Building Press,2005.

[2]何文芳,白卉,刘加平. 吐鲁番地区民居夏季热舒适测试研究[J]. 太阳能学报, 2014(6): 1092-1097.

HE Wenfang,BAI Hui,LIU Jiaping.Field test study on summer thermal environment of traditional residential in Turpan basin [J].Acta Energiae Solaris Sinica ,2014(6):1092-1097.

[3]郭超月,赵蕾,杨柳. 基于人体热适应需求的居住建筑外墙热工设计方法及关键参数研究[J]. 暖通空调, 2018(1): 113-117.

GUO Chaoyue,ZHAO Lei,YANG Liu.Thermal design method and key parameters of residential building envelopes based on human thermal adaptation demand [J].Heating Ventilating & Air Conditioning,2018(1):113-117.

[4]AL-SANEA SA,ZEDAN M. Improving thermal performance of building walls by optimizing insulation layer distribution and thickness for same thermal Mass[J]. Applied Energy, 2011, 88(9): 3113-3124.

[5]AL-SANEA SA,ZEDAN M,Al-hussain S. Effect of thermal mass on performance of insulated building walls and the concept of energy savings potential [J]. Elsevier Ltd, 2012, 89(1): 430-442.

[6]赵金玲,李杰,党伟康. 热惰性指标对围护结构热稳定性量化作用机制[J]. 哈尔滨工业大学学报, 2018, 50(10): 182-188.

ZHAO Jinling,LI Jie,DANG Weikang.Quantitative mechanism of thermal inertia index on thermal stability of building envelope [J].Journal of Harbin Institute of Technology,2018,50(10):182-188.

[7]杨柳,侯立强,刘江,等. 围护结构蓄热性能对建筑负荷的影响分析[J]. 太阳能学报, 2018(11): 1-9.

YANG Liu,HOU Liqiang,LIU Jiang,et al.Impact of thermal storage capacity of envelope on building load [J].Acta Energiae Solaris Sinica ,2018(11):1-9.

[8]朱新荣,王润山,杨柳,等. 蓄热体对多层建筑室内热环境的作用分析[J]. 太阳能学报, 2013(8): 1410-1414.

ZHU Xinrong,WANG Runshan,YANG Liu, et al.Sensitivity analysis of thermal mass on indoor thermal environment in multistory buildings [J].Acta Energiae Solaris Sinica ,2013(8):1410-1414.

[9]JIN X,ZHANG X,CAO Y, et al. Thermal performance evaluation of the wall using heat flux time lag and decrement factor[J]. Elsevier B.v., 2012, 47: 369-374.

[10]桑国臣,方倩,王文康,等. 太阳能建筑外墙传热系数朝向差异设计研究[J]. 太阳能学报, 2018(12): 1-11.

SANG Guochen,FANG Qian,WANG Wenkang, et al.Study on difference of heat transfer coefficient in different facing orientation exterior wall of solar building [J].Acta Energiae Solaris Sinica ,2018(12):1-11.

[11]张宇峰,赵荣义. 均匀和不均匀热环境下热感觉、热可接受度和热舒适的关系[J]. 暖通空调, 2007, 206(12): 25-31.

ZHANG Yufeng,ZHAO Rongyi.Relationships between thermal sensation,acceptability and comfort under uniform and non-uniform thermal environments [J].Heating Ventilating & Air Conditioning,2007, 206(12):25-31.

[12]中华人民共和国住房和城乡建设部. 民用建筑热工设计规范:GB 50176-2016[S].中国建筑工业出版社.2016.

Ministry of Housing and Urban-Rural Development of The Peoples Republic China. Code for Thermal Design of Civil Building: GB 50176-2016.[S]. China Architecture & Building Press,2016.

[13]中华人民共和国住房和城乡建设部. 建筑热环境测试方法标准:JGJ/T 347-2014[S]. 中国建筑工业出版社,2014.

Minstry of Housing and Urban-Rural Development of the People s Republic China.Standard of Test Methods for Thermal environment of Building:JGJ/T 347-2014[S]. China Architecture & Building Press,2014.

[14]YAN H,YANG L,ZHENG W, et al. Analysis of behaviour patterns and thermal responses to a hot-arid climate in rural China [J]. Elsevier Ltd, 2016, 59: 92-102.

[15]茅艳. 人体热舒适气候适应性研究[D]. 西安: 西安建筑科技大学, 2007.

备注/Memo

备注/Memo:
收稿日期:2018-05-28
修改稿日期:2019-06-04
基金项目:十三五重点研发计划“建筑节能设计基础参数研究”项目(2018YFC070004)
第一作者:陈洁(1986-),女,博士生,主要研究被动式建筑设计与节能研究.E-mail: 442509779@qq.com
更新日期/Last Update: 2019-09-17