[1]刘毅,张勇,袁青,等.邻近边坡地铁车站基坑顺逆结合施工稳定性分析[J].西安建筑科技大学学报(自然科学版),2019,51(06):873-881.[doi:10.15986/j.1006-7930.2019.06.015]
 LIU Yi,ZHANG Yong,YUAN Qing,et al.Analysis on the stability of bias metro station pit excavated through the combination method of bottom-up and top-down technology[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(06):873-881.[doi:10.15986/j.1006-7930.2019.06.015]
点击复制

邻近边坡地铁车站基坑顺逆结合施工稳定性分析()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
51
期数:
2019年06期
页码:
873-881
栏目:
出版日期:
2019-12-31

文章信息/Info

Title:
Analysis on the stability of bias metro station pit excavated through the combination method of bottom-up and top-down technology
文章编号:
1006-7930(2019)06-0873-09
作者:
刘毅1 张勇2 袁青1 陈佳玮3 4 李元海3 4 唐晓杰3 4
(1. 中交第二航务工程局有限公司技术中心,湖北 武汉 430040;2 .中交(广州)建设有限公司,广东 广州 511458;3. 中国矿业大学力学与土木工程学院,江苏 徐州 221116;4. 中国矿业大学深部岩土力学与地下工程国家重点实验室,江苏 徐州 221116)
Author(s):
LIU Yi1 ZHANG Yong2 YUAN Qing1 CHEN Jiawei3 4 LI Yuanhai3 4 TANG Xiaojie3 4
(1. Technology Center, CCCC Second Harbor Engineering Company Ltd., Wuhan 430040, China;2.China Communications Construction Company (Guangzhou) Ltd., Guangzhou 511458, China;3. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China;4. State Key Laboratory for Geomechanics& Deep Underground Engineering, Xuzhou 221116, China)
关键词:
邻近边坡顺逆结合车站基坑施工稳定性监测数值模拟
Keywords:
adjacent to the slope combination of bottom-up and top-down technology metro station pit construction stability monitor numerical simulation
分类号:
U 231
DOI:
10.15986/j.1006-7930.2019.06.015
文献标志码:
A
摘要:
随着城市地铁线路穿越山地环境及交通干线的日益增多,车站基坑邻近边坡以及横跨交通干道作为两种典型的特殊施工环境变得愈发难以避免,而采用顺逆结合施工技术可有效缓解基坑工程与现有交通的矛盾.现有研究对于偏压环境下地铁车站基坑顺逆结合施工过程的系统分析相对欠缺,为分析偏压环境及顺逆结合施工方式对于基坑稳定性的影响,本文依托深圳轨道交通2号线莲塘口岸站工程,基于现场监测数据分及数值模拟方法对偏压环境下顺逆结合施工过程中地层及围护结构的稳定性情况进行了研究.结果显示,施工过程中基坑土体及围护结构均处于稳定状态,施工完成后地表沉降主要影响区分布在0~1.25H之间,次要影响区在1.25~2.0H之间,沉降最大值出现在025H区域附近(H为基坑开挖深度),相对于无偏压环境扩大了25%的沉降影响范围.边坡偏压的存在主要影响邻近边坡处围护桩变形,偏压侧拉锚作用可显著减小围护桩的水平变形,相对于无锚索情况可有效缩减10倍的围护桩水平变形.
Abstract:
With the increasing number of subway lines crossing the mountain and transport arteries, it becomes more difficult to avoid the situation of the station adjacent to side slope and the crosscity traffic artery. Through the combination method of bottom-up and top-down technology, contradiction between the foundation pit project and the existing traffic can be well relieved. There is a lack of systematic analysis on the construction process of the subway station foundation pit under the bias environment Based on the project of Liantangkouan metro station of No 2 rail line in Shenzhen, deformation characteristics of stratum and supporting structures were analyzed through practical monitor data and numerical simulation method, to obtain the effect of bias pressure of high slope and the construction method. As the results shown, the foundation pit soil mass and the surrounding structure are in a stable state during the construction. Also, the main impact area of surface subsidence is distributed between 0~1.25H, when the secondary impact area is between 1.25~2.0H (“H” refers to the depth of excavated pit). The maximum settlement is distributed around 025H The influence range of settlement is increased by 25% compared with the unbiased environment. Moreover, the existence of slope bias mainly affects the deformation of retaining piles near slope. The anchor tension plays an important role that the maximum horizontal deformation of the support piles can be reduced by approximately 10 times.

参考文献/References:

[1]王志红. 北京地铁平乐园站盖挖逆筑深基坑设计[J]. 岩土工程学报, 2012, 34 (S1): 699-704.

WANG Zhihong. Design of deep excavation of pingleyuan station of beijing metro using covering top-down method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (S1): 699-704.
[2]刘继强, 田志强, 林志斌, 等. 高边坡对邻近基坑稳定性的影响研究[J]. 隧道建设, 2011, 31(3): 294-300.
LIU Jiqiang, TIAN Zhiqiang, LIN Zhibin, et al. Numerical analysis on stability of foundation pit at foot of high slope[J]. Tunnel Construction, 2011, 31(3): 294-300.
[3]李大鹏, 唐德高, 闫凤国, 等. 深基坑空间效应机理及考虑其影响的土应力研究[J]. 浙江大学学报(工学版), 2014, 48(9): 1632-1639, 1720.
LI Dapeng, TANG Degao, YAN Fengguo, et al. Mechanics of deep excavation’s spatial effect and soil pressure calculation method considering its influence[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(9): 1632-1639, 1720.
[4]刘波, 章定文, 席培胜. 偏压基坑工程设计、施工与受力变形特性研究进展[J]. 中国矿业大学学报, 2018, 47(4): 791-804.
LIU Bo, ZHANG Dingwen, XI Peisheng. Review on design, construction, stress and deformation characteristics of asymmetrically loaded deep excavation[J]. Journal of China University of Mining & Technology, 2018, 47(4): 791-804.
[5]LIU Jie, HENG Hengcao, XIAO Fengjiang. Deformation monitoring and numerical analysis at the top of slope of a foundation pit[J]. Applied Mechanics and Materials, 2013, 353: 640-43.
[6]石钰锋, 阳军生, 白伟, 等. 紧邻铁路偏压基坑围护结构变形与内力测试分析[J]. 岩石力学与工程学报, 2011, 30(4): 826-833.
SHI Yufeng, YANG Junsheng, BAI Wei, et al. Analysis of field testing for deformation and internal force of unsymmetrical loaded foundation pit`s enclosure structure close to railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(4): 826-833.
[7]徐烨, 冯仁麟, 吴跃华. 地铁车站偏载深基坑围护结构设计分析[J]. 城市轨道交通研究, 2012, 15(9): 43-48.
XU Ye, FENG Renlin, WU Yuehua. Design and analysis of the support structure for metro station unsymmetrical loading pit[J]. Urban Mass Transit, 2012(9): 43-48.
[8]刘波, 席培胜, 章定文. 偏压作用下非等深基坑开挖效应数值分析[J]. 东南大学学报, 2016, 46(4): 853-859.
LIU Bo, XI Peisheng, ZHANG Dingwen. Numerical analysis of excavation effect of unsymmetrical loaded foundation pit with different excavation depths[J]. Journal of Southeast University, 2016, 46(4): 853-859.
[9]王海龙, 方焘, 余小强, 等. 临江下立交匝道偏压基坑开挖方案优化[J]. 铁道科学与工程学报, 2016, 13(6): 1061-1067.
WANG Hailong, FANG Tao, YU Xiaoqiang, et al. The excavation scheme optimization of beside river interchange ramp unsymmetrical loaded foundation pit[J]. Journal of Railway Science and Engineering, 2016, 13(6): 1061-1067.
[10]中华人民共和国住房和城乡建设部. 城市轨道交通工程监测技术规范: GB 50911—2013[S]. 北京: 中国建筑工业出版社, 2013.
Ministry of Housing and Urban Rural Development of the People′s Republic of China. Code for monitoring measurement of urban rail transit engineering: GB 50911—2013[S]. Beijing: China Architecture & Building Press, 2013.
[11]朱安龙, 张胤, 戴妙林, 等. 基于FLAC3D数值模拟的让压锚索边坡加固机理研究[J]. 岩土工程学报, 2017, 39(4): 713-719.
ZHU Anlong, ZHANG Yi, DAI Miaolin, et al. Reinforcement mechanism of slopes with yielding anchor cables based on numerical simulation of FLAC3D[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 713-719.
[12]谢和平, 周宏伟, 王金安, 等. FLAC在煤矿开采沉陷预测中的应用及对比分析[J]. 岩石力学与工程学报, 1999(4): 29-33.
XIE Heping, ZHOU Hongwei, WANG Jinan, et al. Application of FLAC to predict ground surface displacements due to coal extraction and its comparative analysis[J]. Chinese Journal of Rock Mechanics & Engineering, 1999(4): 29-33.
[13]聂淼. 深基坑开挖过程数值模拟及支护对策[D]. 贵州: 贵州大学地质工程, 2009.
NIE Miao. Numerical simulation and support countermeasures of deep foundation pit excavation[D]. Guizhou: Geological engineering of Guizhou university, 2009.
[14]HSIEH Piogo, OU Changyu. Shape of ground surface settlement profiles caused by excavation[J]. Canadian Geotechnical Journal, 1998, 35(6): 1004-1017.
[15]郑杰明, 谢玖琪, 杨平, 等. 深基坑开挖支护结构水平变形对地表沉降影响的数值模拟[J]. 现代隧道技术, 2013, 50(2): 102-108.
ZHENG Jieming, XIE Jiuqi, YANG Ping, et al. Numerical Simulation of the Effects of Horizontal Deformation of the Supporting Structure on Surface Settlement in Deep Foundation Pits[J]. Modern Tunnelling Technology, 2013, 50(2): 102-108.

备注/Memo

备注/Memo:
收稿日期:2019-01-21修改稿日期:2019-09-19
基金项目:国家自然科学基金项目(51174197)
第一作者:刘毅(1982-),男,高级工程师,主要从事城市轨道交通领域的施工技术研究工作.E-mail:157038331@qq.com
更新日期/Last Update: 2020-01-21