[1]刘 勇.氯盐侵蚀对混凝土微观结构损伤的影响研究[J].西安建筑科技大学学报(自然科学版),2020,52(03):390-395.[doi:10.15986/j.1006-7930.2020.03.012]
 LIU Yong.Study on the damage characteristics of concrete structures by chloride erosion[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(03):390-395.[doi:10.15986/j.1006-7930.2020.03.012]
点击复制

氯盐侵蚀对混凝土微观结构损伤的影响研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
52
期数:
2020年03期
页码:
390-395
栏目:
出版日期:
2020-06-30

文章信息/Info

Title:
Study on the damage characteristics of concrete structures by chloride erosion
文章编号:
1006-7930(2020)03-0390-06
作者:
刘 勇
(泸州职业技术学院 建筑工程学院,四川 泸州,646000)
Author(s):
LIU Yong
(Institute of Civil Engineering, Luzhou Vocational & Technical College,Sichuan Luzhou 646000, China)
关键词:
混凝土 氯盐侵蚀 核磁共振 质量损失率 孔隙结构
Keywords:
concrete chlorine erosion NMR mass loss rate pore structure
分类号:
TV533; TU528.571
DOI:
10.15986/j.1006-7930.2020.03.012
文献标志码:
A
摘要:
为了研究氯盐侵蚀作用对混凝土微观结构的损伤规律,进行不同浓度的氯盐溶液浸泡试验,分别对浸泡28 d、56 d和84 d的混凝土进行质量测试和低场核磁共振扫描(LF-NMR),在此基础上分析了混凝土受氯盐腐蚀的损伤机理.研究结果表明:随着氯盐浓度的增加,混凝土试件的质量损失率呈线性增加规律,且质量损失率随浸泡时间增加也有明显的上升趋势; 浸泡28天的混凝土T2分布曲线呈“双峰型”分布,而浸泡56和84天的混凝土T2分布曲线呈“三峰型”分布; 质量损失率与谱面积具有良好的线性关系,说明根据T2谱面积可以对混凝土的微观结构损伤进行合理描述; 结合扫描电子显微镜(SEM)图像分析,认为氯盐浸泡过程中产生的渗透压力和化学腐蚀是影响混凝土孔隙结构的主要原因.研究结果为混凝土耐久性在氯盐侵蚀条件下的劣化规律认识提供了一定参考.
Abstract:
In order to study the chlorine salt erosion damage law of marine engineering concrete, different concentrations of chloride salt solution immersion tests with a soaking time of 28, 56 and 84 days were conducted to concrete.Low field NMR scans(LF-NMR)were conducted to analyze the damage mechanism of concrete corrosion by chlorine salt.Results showed that the mass loss rate of concrete specimens increased linearly with the increase of chloride concentration, and the mass loss rate also increased with the increase of soaking time.The T2 distribution curves of concrete soaked for 28 days were bimodal, while the T2 distribution curves of concrete soaked for 56 and 84 days were trimodal.The mass loss rate has a good linear relationship with the spectral area, which indicates that the microstructure damage of concrete can be described reasonably according to T2 spectral area.Combined with SEM image analysis, it is concluded that the seepage pressure and chemical corrosion caused by chlorine salt immersion are the main reasons that affect the pore structure of marine concrete.The results provide a reference for the understanding of the deterioration law of concrete durability under the condition of chloride erosion.

参考文献/References:

[1] ASKARZADEH A. Electrical power generation by an optimised autonomous PV/wind/tidal/battery system[J]. Renewable Power Generation IET, 2017, 11(1):152-164.
[2]HUGHES P, FAIRHURST D, SHERRINGTON I, et al. Microscopic study into biodeterioration of marine concrete[J]. International Biodeterioration and Biodegradation, 2013, 79(1): 14-19.
[3]Limeira J, ETXEBERRIA M, AGULLó L, et al. Mechanical and durability properties of concrete made with dredged marine sand[J]. Construction and Building Materials,2011,25(11): 4165-4174.
[4]杨绿峰,蔡荣,余波.海洋大气区混凝土表面氯离子浓度的形成机理和多因素模型[J].土木工程学报,2017,50(12):46-55.
YANG Lufeng, CAI Rong, YU Bo, Formation mechanism and multi-factor model for surface chloride concentration of concrete in marine atmosphere area[J]. Civil Engineering Journal, 2017,50(12):46-55.
[5]王振山,邢立新,赵凯,等.硫酸镁侵蚀环境下玄武岩纤维混凝土耐腐蚀及力学性能劣化研究[J/OL].应用力学学报: 2020,37(1):134-141.
WANG Zhenshan, XING Lixin, ZHAO Kai, et al. Study on corrosion resistance and mechanical property degradation of basalt fiber reinforced concrete under magnesium sulfate erosion environment[J/OL]. Chinese Journal of Applied Mechanics,2020,37(1):134-141.
[6]彭跃辉,黄琳雅,陈梦成,等.陶瓷粉再生混凝土氯离子扩散性能研究[J].西安建筑科技大学学报(自然科学版),2019,51(2):177-185,229.
PENG Yuehui, HUANG Linya, CHEN Mengzhen, et al. Study on chloride diffusion properties of recycled ceramic concrete [J]. J. of Xi’an Univ. of Arch. & Tech.,(Natural Science Edition), 2019,51(2):177-185,229.
[7]ATIYE Farahani, HOSEIN Taghaddos, MOHAMMAD Shekarchi. Chloride diffusion modeling in pozzolanic concrete in marine site[J]. ACI Materials Journal, 2018,115(4):509-518.
[8]DA Bo, YU Hongfa, MA Haiyan, et al. Reinforcement corrosion research based on the linear polarization resistance method for coral aggregate seawater concrete in a marine environment[J]. Anti-Corrosion Methods and Materials, 2018,65(5):458-470.
[9]禹卓杰,秦想姣,刘杰,等.疲劳荷载作用下混凝土中氯离子渗透性能的研究进展[J].中外公路,2017,37(2):281-288.
YU Zuojie, QIN Xiangjiao, LIU Jie, et al. Research progress of chloride ion permeability in concrete under fatigue load [J]. Journal of China and Foreign Highway: 2017,37(2):281-288.
[10]李漠,周景润.粉煤灰与聚合物水泥防水涂料对混凝土抗氯离子侵蚀性能的影响[J].新型建筑材料,2010,37(8):73-76.
LI Mo, ZHOU Jingrun. The influence of fly ash and polymer cement waterproof coating on the corrosion resistance of concrete [J]. New Building Materials: 2010,37(8):73-76.
[11]FAURE P, PETER U, LESUEUR D, et al. Water transfers within hemp lime concrete followed by NMR[J]. Cement & Concrete Research, 2012, 42(11):1468-1474.
[12]丁庆军,石华,杨军,等.卤水侵蚀对水泥粉煤灰浆体微结构影响[J].硅酸盐通报,2018,37(1):17-24,34.
DING Qingjun, SHI Hua, YANG Jun, et al. Influence of brine erosion on Microstructure of cement fly ash paste [J].Bulletin of the Chinese Ceramic Societ, 2018,37(1):17-24,34.
[13]ZHANG J, GUO J, LI D, et al. The influence of admixture on chloride time-varying diffusivity and microstructure of concrete by low-field NMR[J]. Ocean Engineering,2017,142(1):94- 101.
[14]FOURMENTIN M, FAURE P, PELUPESSY P, et al. NMR and MRI observation of water absorption/uptake in hemp shives used for hemp concrete [J]. Construction and Building Materials, 2016, 124:405-413.
[15]JEANETTE Orlowsky. Measuring the layer thicknesses of concrete coatings by mobile NMR- A study on the influence of steel reinforcements [J]. Construction and Building Materials,2011, 27(1).:341-349.
[16]张玉,刘伯权,吴涛,等.高强页岩轻骨料混凝土配合比与微观结构研究[J].西安建筑科技大学学报(自然科学版),2018,50(2):225-232.
ZHANG Yu, LIU Boquan, WU Tao,et al. Study on mix proportion and microstructure of high strength shale lightweight aggregate concrete [J]. J. of Xi’an Univ. of Arch. & Tech.(Natural Science Edition), 2018,50(2): 225-232.

相似文献/References:

[1]丁红岩,梁玉国,高天宝,等.基于可靠度理论的无机胶植筋设计方法[J].西安建筑科技大学学报(自然科学版),2015,47(01):6.[doi:10.15986/j.1006-7930.2015.01.002]
 DING Hongyan,LIANG Yuguo,GAO Tianbao.The design method of inorganic glue bonded rebars based on reliability theory[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2015,47(03):6.[doi:10.15986/j.1006-7930.2015.01.002]
[2]于本田,王起才,周立霞,等.兰新铁路第二双线混凝土矿物掺合料掺量优化试验研究[J].西安建筑科技大学学报(自然科学版),2012,44(03):351.[doi:10.15986/j.1006-7930.2012.03.008]
 YU Ben-tian,WANG Qi-cai,ZHOU Li-xia,et al.Optimization research on the contents of mineral admixture of concrete in the 2nd double line of Lanzhou-Xinjiang Railway[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2012,44(03):351.[doi:10.15986/j.1006-7930.2012.03.008]
[3]马中军,谈志诚,张 铟.混凝土桥梁应变的区间型预警阈值设定[J].西安建筑科技大学学报(自然科学版),2013,45(04):526.[doi:10.15986/j.1006-7930.2013.04.011]
 MA Zhong-jun,TAN Zhi-cheng,ZHANG Yin.Interval strain threshold setting method for early warning of concrete bridge[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2013,45(03):526.[doi:10.15986/j.1006-7930.2013.04.011]
[4]侯 炜,贺拴海,张 岗.防火涂层对高温后混凝土抗压强度的影响[J].西安建筑科技大学学报(自然科学版),2014,46(02):241.[doi:10.15986/j.1006-7930.2004.02.015]
 HOU Wei,HE Shuanhai,ZHANG Gang.Effects of fire protection layer on compressive strength of concreteafter high temperature[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2014,46(03):241.[doi:10.15986/j.1006-7930.2004.02.015]
[5]韦 俊,孟 浩,薛圣广.钢筋不均匀锈蚀引起的混凝土保护层开裂有限元分析[J].西安建筑科技大学学报(自然科学版),2011,43(05):747.[doi:DOI :10.15986/j .1006-7930.2011.05.019]
 WE I J un,MENG Hao,XUE Sheng-guang.FEM analysis on the crack process of concrete coverinduced by non-uniform corrosion of re-bar[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2011,43(03):747.[doi:DOI :10.15986/j .1006-7930.2011.05.019]
[6]牛荻涛,陆炫毅,苗元耀,等.盐雾环境下疲劳损伤混凝土氯离子扩散性能[J].西安建筑科技大学学报(自然科学版),2015,47(05):617.[doi:DOI:10.15986/j.1006-7930.2015.05.001]
 NIU Ditao,LU Xuanyi,MIAO Yuanyao,et al.Diffusion of chloride ions into fatigue-damaged concrete in salt spray environment[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2015,47(03):617.[doi:DOI:10.15986/j.1006-7930.2015.05.001]
[7]朱方之1,马志鸣2,蒋连接1,等.持载和冻融循环对钢筋混凝土粘结性能的影响[J].西安建筑科技大学学报(自然科学版),2016,48(05):643.[doi:10.15986/j.1006-7930.2016.05.005]
 ZHU Fangzhi,MA Zhiming,JIANG Lianjie,et al.Study of influence of sustained load and freeze-thaw cycling on the bond behavior of steel reinforced concrete[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2016,48(03):643.[doi:10.15986/j.1006-7930.2016.05.005]
[8]胡晓鹏,孙广帅,张成中,等.混凝土早期碳化性能的试验研究[J].西安建筑科技大学学报(自然科学版),2017,49(04):492.[doi:10.15986/j.1006-7930.2017.04.005]
 HU Xiaopeng,SUN Guangshuai,ZHANG Chengzhong,et al.Experimental study on early carbonation of concrete[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2017,49(03):492.[doi:10.15986/j.1006-7930.2017.04.005]
[9]李晓琴,陈前均,陈保淇,等.混凝土SHPB试验端面摩擦效应研究[J].西安建筑科技大学学报(自然科学版),2018,50(02):209.[doi:10.15986/j.1006-7930.2018.05.009]
 LI Xiaoqin CHEN Qianjun CHEN Baoqi TAO Yi.Study on concrete SHPB tests with interface friction effects[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2018,50(03):209.[doi:10.15986/j.1006-7930.2018.05.009]
[10]苗元耀,牛荻涛,程雪莉.钢筋混凝土桥梁疲劳荷载模型及应力水平研究[J].西安建筑科技大学学报(自然科学版),2018,50(04):500.[doi:10.15986/j.1006-7930.2018.04.006]
 MIAO Yuanyao,NIU Ditao,CHENG Xueli.Study on fatigue load model and stress level of the reinforeed concrete bridge[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2018,50(03):500.[doi:10.15986/j.1006-7930.2018.04.006]

备注/Memo

备注/Memo:
收稿日期:2019-11-04 修改稿日期:2020-05-15
基金项目:吉林省自然科学基金项目(20180101310JC)
第一作者:刘勇(1983-)男,硕士,讲师,主要从事结构抗震、工程项目管理方面的研究.E-mail:canzhi842@sina.com
更新日期/Last Update: 2020-07-30