[1]杨柳,齐静妍,霍旭杰,等.气候变化对室外设计条件和冷负荷峰值的影响[J].西安建筑科技大学学报(自然科学版),2021,53(04):463-471.[doi:10.15986/j.1006-7930.2021.04.001]
 YANG Liu,QI Jingyan,HUO Xujie,et al.Impact of climate change outdoor design conditions and reduction in peak cooling loads[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(04):463-471.[doi:10.15986/j.1006-7930.2021.04.001]
点击复制

气候变化对室外设计条件和冷负荷峰值的影响()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
53
期数:
2021年04期
页码:
463-471
栏目:
出版日期:
2021-08-28

文章信息/Info

Title:
Impact of climate change outdoor design conditions and reduction in peak cooling loads
文章编号:
1006-7930(2021)04-0463-09
作者:
杨柳齐静妍霍旭杰牛兵兵
(西安建筑科技大学 建筑学院,陕西 西安 710055)
Author(s):
YANG LiuQI JingyanHUO XujieNIU Bingbing
(School of Architecture,Xi’an Univ. of Arch. & Tech.,Xi’an 710055,China)
关键词:
室外设计条件 室外空气焓 气候变化 冷负荷峰值降低
Keywords:
outdoor design conditions outdoor air enthalpy climate change reduction in peak cooling load
分类号:
TU111
DOI:
10.15986/j.1006-7930.2021.04.001
文献标志码:
A
摘要:
通过分析中国五个主要气候区中的五个代表城市在两个30年里(1971-2000年和1984-2013年)的设计干球温度(DDBT)和同时发生湿球温度(CWBT),研究了气候变化对室外设计条件和制冷负荷峰值的影响.研究结果发现1984-2013年的DDBT往往高于1971-2000年,但是1984-2013年的CWBT和相应的室外空气焓值在不同的保证率水平下均小于1971-2000年.与由于室外空气焓降低而导致的新风负荷减少相比,因温度升高而通过建筑物围护结构所产生的传导热的增益相对较小,这导致在五个主要气候区中冷负荷峰值均降低.这个结果与普遍认为的全球变暖将使室外设计条件更加严格,从而导致更高的冷负荷峰值和更大的供暖、通风和空调(HVAC)设备系统的观点相反.
Abstract:
We have examined the impact of climate change on outdoor design conditions and implications for peak cooling loads by analysing the design dry-bulb temperature(DDBT)and coincident wet-bulb temperature(CWBT)for two 30-year periods(1971-2000 and 1984-2013)in five cities within the five major climate zones across China. DDBT during 1984-2013 tends to be higher than that during 1971-2000,but the CWBT and the corresponding outdoor enthalpy during 1984-2013 are smaller than 1971-2000 at different significance levels. Increase in conduction heat gain through the building envelope due to rising temperature is relatively small compared with the reduction in fresh air load due to lower outdoor air enthalpy. This has resulted in a reduction in the peak cooling loads in all five major climates. This is in contrast to the generally held view that global warming would lead to more stringent outdoor design conditions,and hence higher peak cooling loads and larger heating,ventilation and air conditioning(HVAC)plants.

参考文献/References:

[1]LI D H W,YANG L,LAM J C. Impact of climate change on energy use in the built environment in different climate zones-A[J]. Review Energy,2012,42:103-112.
[2]SCOTT M J,WRENCH L E,HADLEY D L. Effects of climate change on commercial building energy demand[J]. Energy Sources,1994,16:317-332.
[3]RADHI H. Evaluating the potential impact of global warming on the UAE residential buildings a contribution to reduce the CO2 emission[J]. Build Environ,2009,44:2451-2462.
[4]GUAN L. Implication of global warming on air-conditioned office buildings in Australia[J]. Build Res Inform,2009,37:43-54.
[5]WANG X,CHEN D. Assessment of climate change impact on residential building heating and cooling energy requirement in Australia[J]. Build Environ,2010,45:1663-1682.
[6]WAN K K W,LI D H W. Future trends of building heating and cooling loads and energy consumption in different climates[J]. Build Environ,2011,46:223-234.
[7]GUAN L. Energy use,indoor temperature and possible adaptation strategies for air-conditioned office buildings in face of global warm ing[J]. Build Environ,2012,55:8-19.
[8]ROETZEL A,TSANGRASSOULIS A. Impact of climate change on Comfort and energy performance in offices[J]. Build Environ,2012,57:349-361.
[9]WAN K K W,LI D H W,PAN W. Impact of climate change on building energy use in different climate zones and mitigation and adaptation implications[J]. Appl Energy,2012,97:274-282.
[10]NIK V M,KALAGASIDIS A S. Impact study the climate change on the energy performance of the building stock in Stockholm considering four climate uncertainties[J]. Build Environ,2013,60:291-304.
[11]LEVERMORE G J,KEEBLE E. Dry-bulb temperature analyses for climate change at three UK sites in relation to the forthcoming CIBSE Guide to weather and solar data[J]. Build Serv Eng Res Technol,1998,19:175-181.
[12]WRIGHT A J. Evidence for climate change relevant to building design in the UK,1976-2000[J]. Build Serv Eng Res Technol,2002,23:279-285.
[13]DELFANI S,KARAMI M,PASDARSHAHRI H. The effects of climate change on energy consumption of cooling systems in Tehran[J]. Energy Build,2010,42:1952-1957.
[14]THEVENARD D,SHEPHARD M W. Temperature trends for locations listed in the tables of climatic design conditions in the 2013 ASHRAE Handbook-Fundamentals[J]. ASHRAE Trans,2014,120:133-146.
[15]CHOW D H C,LEVERMORE G,JONES P. Extreme and near-extreme climate change data in relation to building and plant design[J]. Build Serv Eng Res Technol,2002,23:233-242.
[16]WATKINS R,LEVERMORE G J. Quantifying the effects of climate change and risk level on peak load design in Buildings[J]. Build Serv Eng Res Technol,2011,32:9-19.
[17]LAM J C,HUI S C M. Outdoor design conditions for HVAC system design and energy estimation for buildings in Hong Kong[J]. Energy Build,1995,22:25-43.
[18]THEVENARD D,GUEYMARD C A. Updating the ASHRAE climatic data for design and standards[J]. ASHRAE Trans,2010,116(Part 2):444-459.
[19]ZHAO S. Physical geography of China[M]. New York:Van Nostrand Reinhold,1986.
[20]住房和城乡建设部.民用建筑热设计规范:GB 50176-2016[S].北京:中国建筑工业出版社,2016.
MOHURD. Thermal design code for civil buildings:GB 50176-2016[S].Beijing:China Architecture and Building Press,2016.
[21]WANG S,XU X. Optimal and robust control of outdoor ventilation airflow rate for improving energy efficiency and IAQ[J]. Build Environ,2004,39:763-773.
[22]RACKES A,WARING MS. Alternative ventilation strategies in U.S. offices:Comprehensive assessment and sensitivity analysis of energy saving potential[J].Build Environ,2017,116:30-44.
[23]GUAN L,BENNETT M,BELL J. Development of a climate assessment tool for hybrid air conditioner[J]. Build Environ,2014,82:371-380.
[24]LAM J C,TSANG C L,YANG L. Weather data analysis and design implications for different climatic zones in China[J]. Build Environ,2005,40:277-296.
[25]THEVENARD D. Influence of long-term trends and period of record selection on the calculation of climatic design conditions and degree days[J]. ASHRAE Trans,2010,116(Part1):447-460.
[26]住房和城乡建设部.民用建筑采暖通风空调设计规范:GB 50736-2012[S].北京:中国建筑工业出版社,2016.
MOHURD. Code for design of heating,ventilation and air conditioning of civil buildings:GB 50736-2012[S]. Beijing:China Architecture and Building Press,2012.
[27]住房和城乡部.公共建筑节能设计标准:GB 50189-2015[S].北京:中国建筑工业出版社,2015.
MOHURD. Design standard for energy efficiency of public buildings:GB 50189-2015[S]. Beijing:China Architecture and Building Press,2015.
[28]CROW L W. Development of hourly data for weather year for energy calculations(WYEC),including solar data,at 21 stations throughout the U.S[J]. ASHRAE Trans 1981; 87:896-906.
[29]LI D H W,WONG S L,LAM J C. Climatic effects on cooling load determination in subtropical regions[J]. Energy convers Manage,2003; 44:1831-1843.
[30]霍旭杰. 建筑室外设计计算条件基础科学问题研究[D]. 西安:西安建筑科技大学,2018.
HUO Xujie. Studies on outdoor calculation condition of building design in China[D]. Xi’an:Xi’an Univ. of Arch. & Tech.,2018.
[31]李红莲,吕凯琳,杨柳. 气候变化下未来西安几种类型建筑暖通空调负荷分析预测[J]. 西安建筑科技大学学报(自然科学版),2018,50(4):549-555.
LI Honglian,Lü Kailin,YANG Liu. HVAC load analysis and prediction of several types of buildings in Xi’an under climate change[J]. J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2018,50(4):549-555.
(编辑 桂智刚)

备注/Memo

备注/Memo:
收稿日期:2020-11-20 修改稿日期:2021-07-05
基金项目:国家自然科学基金重点项目(51838011)
第一作者:杨柳(1970-),女,博士生导师,主要研究绿色建筑与建筑节能.E-mail:yangliu@xauat.edu.cn
通信作者:齐静妍(1994-),女,硕士,主要研究绿色建筑设计与技术.E-mail:463731606@qq.com
更新日期/Last Update: 2021-08-28