[1]王叶娇,丁科竞,徐云山.粉质黏土导热系数变化规律及模型预测[J].西安建筑科技大学学报(自然科学版),2021,53(04):518-524.[doi:10.15986/j.1006-7930.2021.04.008]
 WANG Yejiao,DING Kejing,XU Yunshan.Variation law and model prediction of thermal conductivity of silty clay[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(04):518-524.[doi:10.15986/j.1006-7930.2021.04.008]
点击复制

粉质黏土导热系数变化规律及模型预测()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
53
期数:
2021年04期
页码:
518-524
栏目:
出版日期:
2021-08-28

文章信息/Info

Title:
Variation law and model prediction of thermal conductivity of silty clay
文章编号:
1006-7930(2021)04-0518-07
作者:
王叶娇1丁科竞1徐云山2
(1.上海大学 土木工程系,上海 200444; 2.桂林理工大学 广西建筑新能源与节能重点实验室,广西 桂林 541004)
Author(s):
WANG Yejiao1DING Kejing1XU Yunshan2
(1.Department of Civil Engineering,Shanghai University,Shanghai 200444,China; 2.Guangxi Key Laboratory of New Energy and Building Energy Saving,Guilin University of Technology,Guilin 541004,China)
关键词:
上海粉质黏土 热线法 含水率 导热系数模型
Keywords:
Shanghai silty clay hot wire method moisture content thermal conductivity model
分类号:
TU411
DOI:
10.15986/j.1006-7930.2021.04.008
文献标志码:
A
摘要:
为了研究与电缆载流量相关的土体导热系数,以上海奉贤区某施工现场粉质黏土研究对象,使用KD2 Pro型热特性分析仪,采用热线法测定较广温度范围(5~90℃)和含水率范围内(干燥~饱和状态)重塑土样的导热系数变化,并运用修正的颗粒间接触传热(IPCHT)导热系数模型对试验结果进行了预测分析.结果表明:非饱和上海黏土在较低温度下(≤60℃)的导热系数随其含水率增加的变化幅度相对较小; 较高温度下(>60℃)土样含水率对导热系数的影响较为显著.而对于饱和土样,其导热系数对温度的变化不太敏感.低于90℃时IPCHT模型预测非饱和黏土土样的导热系数效果比较理想,90℃时该模型的预测值和实际值有偏差,经传质增强因子修正后符合工程要求,但对饱和上海黏土导热系数的预测结果偏差较大.研究结果有助于进一步建立饱和上海黏土导热系数模型与电缆载流量的有限元模型.
Abstract:
In order to study the soil thermal conductivity related to the cable current carrying capacity,the silty clay in a construction site in Fengxian District of Shanghai is taken as the research object. In the study,the hot wire method is adopted to measure the change of thermal conductivity of remolded soil samples in a wide temperature range(5-90°C)and moisture content range(dry-saturated)by means of KD2 Pro thermal property analyzer,and the test results are predicted and analyzed by the modified IPCHT thermal conductivity model. The results show that the change range of thermal conductivity of unsaturated Shanghai clay with the increase of its moisture content is relatively small at lower temperature(≤60℃),and the influence of moisture content of soil sample at higher temperature(>60℃)on thermal conductivity is more significant. However,the thermal conductivity of saturated soil is not sensitive to the change of temperature. When the temperature is lower than 90℃,the IPCHT model is ideal for predicting the thermal conductivity of unsaturated clay samples. There is a deviation between the predicted value and the actual value at 90℃,which meets the engineering requirements after the correction of mass transfer enhancement factor,but the prediction result of thermal conductivity of saturated Shanghai clay has a large deviation. The results are helpful to establish the thermal conductivity model of saturated Shanghai clay and the finite element model of cable ampacity.

参考文献/References:

[1]邱超.双回路单芯电力电缆不同敷设与排列方式下温度场与载流量计算[D].广州:华南理工大学,2013.
QIU Chao. Calculation of temperature field and current carrying capacity under different laying and arrangement of double circuit single core power cable[D]. Guangzhou:South China University of Technology,2013.
[2]XU Y S,SUN D A,ZENG Z T,et al. Temperature dependence of apparent thermal conductivity of compacted bentonites as buffer material for high-level radioactive waste repository[J]. Applied Clay Science,2019,174:10-14.
[3]张婷,杨平.不同因素对浅表土导热系数影响的试验研究[J].地下空间与工程学报,2012,8(6):1233-1238.
ZHANG Ting,YANG Ping. Experimental study on the influence of different factors on the thermal conductivity of shallow topsoil[J]. Journal of Underground Space and Engineering,2012,8(6):1233-1238
[4]ABU-HAMDEH N H,KHDAIR A I,REEDER R C. A comparison of two methods used to evaluate thermal conductivity for some soils[J]. International Journal of Heat and Mass Transfer,2001,44(5):1073-1078.
[5]JOHANSEN O. Thermal conductivity of soil[D]. Trondheim:Norwegian University of Science and Technology,1975.
[6]LU Seng,REN Tuseng,GONG Yuanshi,et al. An Improved Model for Predicting Soil Thermal Conductivity from Water Content at Room Temperature[J]. Soil Science Society of America Journal,2007,71(1):8.
[7]De VRIES D A. Thermal Properties of Soils In Physics of plant environment[M]. Amsterdam:W R North-Holland Publishing Company,1963.
[8]CAMPBELL G S,JUNGBAUER J D,BIDLAKE W R,et al. Predicting the effect of temperature on soil thermal conductivity[J]. Soil Science,1994,158(5):307-313.
[9]TARNAWSKI V R,GORI F,WAGNER B,et al. Modelling approaches to predicting thermal conductivity of soils at high temperatures[J]. International Journal of Energy Research,2000,24(5):403-423.
[10]TARNAWSKI V R,GORI F. Enhancement of the cubic cell soil thermal conductivity model[J]. International Journal of Energy Research,2002,26(2):143-157.
[11]LEONG W H,TARNAWSKI V R,GORI F,et al. Inter-particle contact heat transfer model:an extension to soils at elevated temperatures[J]. International Journal of Energy Research,2005,29(2):131-144.
[12]岳高伟,雷留鹏,王兆丰,等.高低温环境下松散煤导热系数研究[J].河南理工大学学报(自然科学版),2017,36(2):1-6.
YUE GAOWEI,LEI Liupeng,WANG Zhaofeng,et al. Study on thermal conductivity of loose coal under high and low temperature environment[J]. Journal of Henan University of Technology(Natural Science Edition),2017,36(2):1-6.
[13]李晓波,曹伟涛,白聿钦.AZ91D散热性能的研究[J].河南理工大学学报(自然科学版),2010,29(5):685-688.
LI Xiaobo,CAO Weitao,BAI Yuqin. Study on heat dissipation performance of AZ91D[J]. Journal of Henan University of Technology(Natural Science Edition),2010,29(5):685-688.
[14]ZHANG Tao,CAI Guojun,LIU Songyu,et al. Investigation on thermal characteristics and prediction models of soils[J]. International Journal of Heat and Mass Transfer,2017,106:1074-1086.
[15]CAI Guojun,ZHANG Tao,ANAND P,et al. Thermal characterization and prediction model of typical soils in Nanjing area of China[J]. Engineering Geology,2015,191:23-30.
[16]TAKEUCHI S,KURAMOTO E. Temperature dependence of thermal properties of sands across a wide range of temperatures(30-70°C)[J]. Journal of the Acoustical Society of America,2013,138(4):2256-2265.
[17]HIRAIW A Y,KASUBUCHI T. Temperature dependence of thermal conductivity of soils over a wide range of temperature(5-75℃)[J]. European Journal of Soil Science,2000,51:211-218.
[18]徐云山,曾召田,吕海波,等.高温下红黏土热导率的变化规律试验研究[J].工程地质学报,2017(6):1465-1473.
XU Yunshan,ZENG Zhaotian,Lü Haibo,et al. Experimental study on the change rule of thermal conductivity of red clay under high temperature[J]. Journal of engineering geology,2017(6):1465-1473
[19]刘晨晖,周东,吴恒.土壤热导率的温度效应试验和预测研究[J].岩土工程学报,2012,33(12).
LIU Chenghui,ZHOU Dong,WU Heng. Study on temperature effect test and prediction of soil thermal conductivity[J]. Journal of geotechnical engineering,2012,33(12).
[20]叶为民,唐益群,崔玉军.室内吸力量测与上海软土土水特征[J].岩土工程学报,2005,27(3):347-349.
YE Weiming,TANG Yiqun,CUI Yujun. Indoor suction measurement and characteristics of soft soil water in Shanghai[J]. Journal of geotechnical engineering,2005,27(3):347-349.
[21]张继文,于永堂,李攀,等. 黄土削峁填沟高填方地下水监测与分析[J]. 西安建筑科技大学学报(自然科学版),2016,48(4):477-483.
ZHANG Jiwen,YU Yongtang,LI pan,et al. Monitoring and analysis of groundwater in high fill of Loess Hill cutting and filling ditch[J]. J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2016,48(4):477-483.
(编辑 桂智刚)

备注/Memo

备注/Memo:
收稿日期:2020-12-23 修改稿日期:2021-07-05
基金项目:国家自然科学青年基金项目(41702306)
第一作者:王叶娇(1988-),博士,讲师,主要从事非饱和土力学方面的研究工作.E-mail:yejiaowang@shu.edu.cn
更新日期/Last Update: 2021-08-28