[1]郭 欣,高 嵩,宮尧尧,等.无机防腐剂抗硫酸盐侵蚀机理研究[J].西安建筑科技大学学报(自然科学版),2023,55(01):128-135.[doi:10.15986/j.1006-7930.2023.01.016 ]
 GUO Xin,GAO Song,GONG Yaoyao,et al.Study on sulfate resistance mechanism of inorganic preservatives[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(01):128-135.[doi:10.15986/j.1006-7930.2023.01.016 ]
点击复制

无机防腐剂抗硫酸盐侵蚀机理研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
55
期数:
2023年01期
页码:
128-135
栏目:
出版日期:
2023-02-28

文章信息/Info

Title:
Study on sulfate resistance mechanism of inorganic preservatives
文章编号:
1006-7930(2023)01-0128-08
作者:
郭 欣1高 嵩12宮尧尧1蒋 辉3
(1.青岛理工大学 土木工程学院,山东 青岛 266033; 2.青岛理工大学 蓝色经济区工程建设与安全协同创新中心,山东 青岛 266033; 3.广西壮族自治区建筑工程质量检测中心有限公司,广西 南宁 530005)
Author(s):
GUO Xin1 GAO Song12 GONG Yaoyao1 JIANG Hui3
(1.School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China; 2.Collaborative Innovation Center of Engineering Construction and Safety in Shandong Blue Economic Zone, Qingdao University of Technology, Qingdao 266033, China; 3.Guangxi Construction Testing Centre, Nanning 530005, China)
关键词:
超细矿渣粉 多元复合 钙矾石 防腐蚀机理 云分析
Keywords:
GGBS multivariate composite AFt corrosion protection mechanism cloud analysis
分类号:
TU528
DOI:
10.15986/j.1006-7930.2023.01.016
文献标志码:
A
摘要:
以机械活化超细矿渣粉为主要原料、以石膏和硫铝酸盐水泥熟料(SAC)为辅料,制备海洋环境混凝土用无机防腐剂,利用三元云分析、SEM、XRD研究方法研究其防腐性能和防腐机理.研究结果表明:该多元复合无机防腐剂凝结时间、膨胀率、耐蚀系数等指标均满足标准要求; 掺入该无机防腐剂的普通混凝土在硫酸盐侵蚀150次循环后,耐蚀系数仍高于75%,达到KS150级; 防腐剂的加入有助于水化初期钙矾石(AFt)的生成,并抑制其在水化后期向低硫型钙矾石(AFm)的转化,同时消耗腐蚀原料,并生成多种凝胶体填充晶体骨架的空隙,增加了混凝土微结构的致密性,进而提高混凝土的耐蚀性能,从微观角度为矿渣粉在抗硫酸盐腐蚀中的应用提供理论参考.
Abstract:
The paper, inorganic preservatives for marine environmental concrete are prepared by using the activated ultrafine slag powder as the main raw material, gypsum and sulphur aluminate cement(SAC)as supplementary materials. The corrosion resistance and mechanism of inorganic preservatives are studied by means of ternary cloud analysis, SEM and XRD. The results show that the setting time, expansion rate and corrosion resistance coefficient of the composite inorganic preservative are consistent with the standard requirements. The corrosion resistance coefficient of ordinary concrete mixed with the inorganic preservative is higher than 75% after 150 cycles of sulfate corrosion. The addition of preservatives is helpful to the formation of calcium vanadium stone in the early stage of hydration and inhibits the late conversion to low sulfur calcium vanadium. At the same time, the corrosion raw materials are consumed and the various of gels are generated to fill the voids of cement paste, increasing compactness of the concrete microstructure. In addition, the research results provide a theoretical reference for the application of slag powder in sulfate corrosion resistance at the microscopic level.

参考文献/References:

[1] NAVARRO C, DOEHNE E. Salt weathering: influence of evaporation rate, supersaturation and crystallization pattern[J]. Earth Surface Processes and Landforms, 2015, 24(3):191-209.
[2]GHOBADI M H, BABAZADEH R. Experimental studies on the effects of cyclic freezing-thawing, salt crystallization, and thermal shock on the physical and mechanical characteristics of selected sandstones[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 1001-1016.
[3]张迪,刘斌云,徐天杰.防腐剂对混凝土抗硫酸盐性能影响的试验研究[J].混凝土,2013(10):95-97.
ZHANG Di, LIU Binyun, XU Tianjie. Experimental study on the effect of preservatives on sulfate resistance of concrete[J]. Concrete, 2013(10):95-97.
[4]李响,杭美艳,郝小龙,等.抗硫酸盐侵蚀防腐剂对混凝土性能影响[J].硅酸盐通报, 2016(6):1907-1911.
LI Xiang, HANG Meiyan, HAO Xiaolong, et al. Effect of sulf-ate resistant preservatives on properties of concrete[J]. Bulletin of the Chinese Ceramic Society, 2016(6): 1907-1911.
[5]张小平,刘燕,李新新,等.微膨胀型防腐剂对水泥混凝土耐久性的影响[J].新型建筑材料,2020,47(12):15-18,34.
ZHANG Xiaoping, LIU Yan, LI Xinxin, et al. Effect of micro expansive preservative on durability of cement concrete[J]. New Building Material, 2020, 47(12): 15-18,34.
[6]TANG Z, LI W G, KE G J, et al. Sulfate attack resistance of sustainable concrete incorporating various industrial solid wastes[J]. Journal of Cleaner Production, 2019, 218:810-822.
[7]ARAGON P, RAFAEL A, RUBY M. Alkali-activated conc-rete based on natural volcanic pozzolan: chemical resistance to sulfate attack[J]. Journal of Materials in Civil Engineering, 2020, 32(5):1~10.
[8]丁小富,李长成,赵顺增,等.混凝土抗侵蚀防腐剂性能研究[J].低温建筑技术,2020,42(7):59-61,73.
DING Xiaofu, LI Changcheng, ZHAO Shunzeng, et al. Study on the performance of corrosion-resistant preservative for concr-ete[J]. Low Temperature Architecture Technology, 2020, 42(7): 59-61,73.
[9]LV X D, DONG Y, WANG R K, et al. Resistance improvem-ent of cement mortar containing silica fume to external sulfate attacks at normal temperature[J]. Construction and Building Materials,2020, 258:119630.
[10]SKAROPOULOU A, SOTIRIADIS K, KAKALI G, et al. Use of mineral admixtures to improve the resistance of limestone cement concrete against thaumasite form of sulfate attack[J]. Cement and Concrete Composites, 2013, 37(1):267-275.
[11]HU Y Y, MA L L. Effect of surface treatment of polyprop-ylene(PP)fiber on the sulfate corrosion resistance of cement mortar[J]. Materials, 2021, 14(13):3690-3704.
[12]LI Y, YANG X, LOU P, et al. Sulfate attack resistance of re-cycled aggregate concrete with NaOH-solution-treated crumb rubber[J]. Construction and Building Materials, 2021, 287(4):123044.
[13]GUO L, WU Y, DUAN P, et al. Improving sulfate attack resistance of concrete by using calcined Mg-Al-CO3 LDHs: Adsorption behavior and mechanism[J]. Construction and Building Materials, 2020, 232(2): 117256.
[14]HUANG Q, ZHU X H, ZHAO L, et al. Effect of nanosilica on sulfate resistance of cement mortar under partial immersion[J]. Construction and Building Materials, 2020, 231:117180.
[15]张雄,鲁辉,张永娟,等.矿渣活性激发方式的研究进展[J].西安建筑科技大学学报(自然科学版),2011,43(3):379-384.
ZHANG Xiong, LU Hui, ZHANG Yongjuan, et al. Research progress on activation mode of slag activity[J]. J. of Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2011, 43(3): 379- 384.
[16]王海龙,董宜森,孙晓燕,等.干湿交替环境下混凝土受硫酸盐侵蚀劣化机理[J].浙江大学学报(工学版),2012,46(7):1255-1261.
WANG Hailong, DONG Yisen, SUN Xiaoyan, et al. Degradati-on mechanism of concrete corroded by sulfate in dry-wet alternating environment[J]. Journal of Zhejiang University(Engineering Science), 2012, 46(7): 1255-1261.
[17]张璇. 硫酸盐侵蚀环境下混凝土断裂性能试验研究[D]. 大连:大连理工大学, 2019.
ZHANG Xuan. Experimental study on fracture behavior of concrete under sulfate attack environment[D]. Dalian:Dalian University of Technology, 2019.
[18]纪宪坤,徐可,赵娟,等.矿物掺合料对双膨胀源膨胀剂限制膨胀率的影响研究[J].新型建筑材料,2021,48(8):38-42.
JI Xiankun, XU Ke, ZHAO Juan, et al. Study on the effect of mineral admixture on the limited expansion rate of double expansion source expander[J]. New Building Material, 2021, 48(8): 38- 42.
[19]史琛,何廷树,李益民,等.粉煤灰对硅酸盐水泥-铝酸盐水泥-石膏三元体系性能的影响[J].西安建筑科技大学学报(自然科学版),2016,48(3):459-462.
SHI Chen, HE Tingshu, LI Yimin, et al. Effect of fly ash on properties of Portland cement aluminate cement gypsum ternary system[J]. J. of Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2016, 48(3): 459- 462.
[20]李国新,张歌,史琛,等.膨胀剂在大体积混凝土环境下的膨胀效能研究[J].西安建筑科技大学学报(自然科学版),2016,48(2):289-295.
LI Guoxin, ZHANG Ge, SHI Chen, et al. Study on expansion efficiency of expansion agent in mass concrete environment[J]. J. of Xi'an Univ. of Arc. & Tech.(Natural Science Edition),2016,48(2):289-295.
[21]高嵩,李秋义,张巨松.超细矿渣复合防腐剂对混凝土界面区晶体取向和尺寸影响[J].沈阳建筑大学学报(自然科学版),2015,31(1):109-116.
GAO Song, LI Qiuyi, ZHANG Jusong. Effect of superfine slag composite preservative on crystal orientation and size of concrete interface zone[J]. Journal of Shenyang Jianzhu University(Natural Science), 2015, 31(1): 109-116.
[22]王倩. 镁离子对C-S-H、AFt和AFm的作用及产物M-S-H的性能研究[D]. 西安:西安建筑科技大学,2020.
WANG Qian. Effect of magnesium ion on C-S-H, aft and AFM and properties of product m-s-h[D]. Xi'an:Xi'an University of Architecture and Technology, 2020.
[23]余林岑. 水化硅酸钙的制备及其对水泥水化过程的影响[D].上海:华东理工大学,2018.
YU Lincen. Preparation of hydrated calcium silicate and its effect on cement hydration process[D]. Shanghai:East China University of Science and Technology,2018.

备注/Memo

备注/Memo:
收稿日期:2021-11-23修改稿日期:2023-01-18
基金项目:国家自然基金重点基金联合项目(U2006223),国家自然科学基金项目(51978353)
第一作者:郭 欣(1997—),女,硕士生,主要研究方向为再生混凝土耐久性.E-mail: guox0515@163.com
通信作者:高 嵩(1975—),男,教授,主要研究方向为再生混凝土耐久性. E-mail:gaosong727@126.com
更新日期/Last Update: 2023-02-20