[1]张敬华,袁 勇,孙 清,等.横向激励下隧道-竖井节点地震响应研究[J].西安建筑科技大学学报(自然科学版),2023,55(02):174-179.[doi:10.15986/j.1006-7930.2023.02.003 ]
 ZHANG Jinghua,YUAN Yong,SUN Qing,et al.Seismic responses of tunnel-shaft junction under transverse excitations[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(02):174-179.[doi:10.15986/j.1006-7930.2023.02.003 ]
点击复制

横向激励下隧道-竖井节点地震响应研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
55
期数:
2023年02期
页码:
174-179
栏目:
出版日期:
2023-04-28

文章信息/Info

Title:
Seismic responses of tunnel-shaft junction under transverse excitations
文章编号:
1006-7930(2023)02-0174-06
作者:
张敬华12袁 勇2孙 清1曲雅菲3
(1. 西安交通大学 土木工程系,陕西 西安 710049; 2. 同济大学 土木工程防灾国家重点实验室,上海 200092; 3. 西安交通大学 人居环境与建筑工程学院,陕西 西安 710049)
Author(s):
ZHANG Jinghua12 YUAN Yong2 SUN Qing1 QU Yafei3
(1.Department of Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China; 2.State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China; 3.School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049,China)
关键词:
隧道 竖井 地震响应 振动台试验 拟静力模型
Keywords:
tunnel shaft seismic responses shaking table test pseudo-static model
分类号:
TU93
DOI:
10.15986/j.1006-7930.2023.02.003
文献标志码:
A
摘要:
隧道-竖井节点是地下空间网络的重要节点,也是其抗震薄弱环节。由结构突变造成的土-结构动力相互作用不均匀会导致隧道与竖井产生显著的差动响应。本文依托典型软土道路隧道工程,以隧道-竖井节点为试验对象,依据动力相似原理完成了以土-结构相对刚度为控制因素的模型设计,并开展了横向激励下隧道-竖井节点振动台模型试验。试验中测量了结构加速度响应和结构变形两类数据。通过对比加速度峰值和相关系数,对隧道与竖井间的地震差动响应进行了定量描述,并分析了由此引发的隧道纵向变形模式。在此基础上,基于梁-弹簧模型,提出了隧道-竖井节点地震响应拟静力简化分析模型,并推导了隧道变形的拟静力解析计算方法。经振动台试验结果验证,该拟静力简化分析模型可较好地预测隧道纵向变形,并以闭式解的形式,直接建立了隧道纵向变形与隧道-竖井相对位移的定量关系。
Abstract:
Tunnel-shaft junction is an integral part of the underground network. It is also among the underground structures most vulnerable to seismic impacts. The non-uniform soil-structure interactions stemming from the abrupt structural change are likely to cause discrepant responses between the shaft and the tunnel. Based on the engineering background of a typical highway tunnel in soft soil, a shaking tablet test was conducted on the shaft-tunnel junction. Following the dynamic similitude principles, the soil-structure relative stiffness was chosen as the controlling factor in the design of the model system. During the test, the shaft-tunnel junction was subject to transverse excitations, and accelerations and deformations of the model were recorded. The discrepant responses between the shaft and the tunnel were quantified through comparisons of their acceleration responses. The longitudinal deformation mode of the tunnel was thus analyzed. Hence, based on the beam-spring model, a pseudo-static model was proposed for the shaft-tunnel junction, and a pseudo-static analytical solution was therefore derived. As validated by the test results, the proposed pseudo-static model could predict longitudinal deformations of the tunnel under transverse excitations with reasonable accuracy. Moreover, it directly established a quantified relation between the longitudinal deformation of the tunnel and the tunnel-shaft relative displacement.

参考文献/References:

[1] 王秀英, 刘维宁, 张弥. 地下结构震害类型及机理研究[J]. 中国安全科学学报, 2003, 13(11):55-58.
WANG Xiuying, LIU Weining, ZHANG Mi. Study on the categorization and mechanism of seismic damage of underground structures[J]. China Safety Science Journal, 2003, 13(11):55-58.
[2]小泉淳. 盾构隧道的抗震研究及算例[M]. 北京:中国建筑工业出版社, 2009:2-9.
KOIZUMI Atsushi. Seismic study and examples of shield tunnels[M]. Beijing: China Architecture & Building Press, 2009:2-9.
[3]ZHANG Wengang, HAN Liang, FENG Li, et al. Study on seismic behaviors of a double box utility tunnel with joint connections using shaking table model tests[J]. Soil Dynamics and Earthquake Engineering, 2020, 136:106118.
[4]DING Xuanming, ZHANG Yanling, WU Qi, et al. Shaking table tests on the seismic responses of underground structures in coral sand[J]. Tunnelling and Underground Space Technology, 2021, 109:103775.
[5]WANG Chenglong, DING Xuanming, CHEN Zhixiong, et al. Seismic response of utility tunnels subjected to different earthquake excitations[J]. Geomechanics and Engineering, 2021, 1(24):67-69.
[6]HAN Liang, LIU Hanlong, ZHANG Wengang, et al. Seismic behaviors of utility tunnel-soil system: With and without joint connections [J]. Underground Space, 2022, 5(7):798-811.
[7]ZUCCA Marco, VALENTE Marco. On the limitations of decoupled approach for the seismic behaviour evaluation of shallow multi-propped underground structures embedded in granular soils[J]. Engineering Structures, 2020, 211(5):110497.
[8]LIU Hongtao, XU Chengshun, DU Xiuli. Seismic response analysis of assembled monolithic subway station in the transverse direction[J]. Engineering Structures, 2020, 219(9):110970.
[9]NGUYEN Van-Quang, NIZAMANI Zubair, PARK Duhee, et al. Numerical simulation of damage evolution of Daikai station during the 1995 Kobe earthquake[J]. Engineering Structures, 2020, 206(3):110180.
[10]HASHASH Youssef, HOOK Jeffrey, SCHMIDT Birger, et al. Seismic design and analysis of underground structures[J]. Tunnelling and Underground Space Technology, 2001, 16(4):247-293.
[11]KAUSEL Eduardo. Fundamental solutions in elastodynamics: a compendium[M]. Cambridge: Cambridge University Press, 2006.
[12]燕晓, 袁聚云, 袁勇, 等. 大型振动台试验模型场地土的配制方法[J]. 结构工程师, 2015, 31(5):116-120.
YAN Xiao, YUAN Juyun, YUAN Yong, et al. Study on model soil of large-scale shaking table test[J]. Structural Engineers, 2015, 31(5):116-120.
[13]LU Shasha, XU Hong, WANG Laigui, et al. Effect of flexibility ratio on seismic response of rectangular tunnels in sand: Experimental and numerical investigation[J]. Soil Dynamics and Earthquake Engineering, 2022, 157:107256.
[14]SANDOVAL Eimar, BOBET Antonio. Effect of frequency and flexibility ratio on the seismic response of deep tunnels[J]. Underground Space, 2017, 2(2):125-133.
[15]YANG Yusheng, ZHANG Shaohua, ZHANG Jinghua, et al. Analytical solution for long tunnels in layered saturated poroelastic ground under inclined P1-SV waves[J]. Tunnelling and Underground Space Technology, 2022, 124:104458.
[16]YU Haitao, ZHANG Zhengwei, CHEN Juntao, et al. Analytical solution for longitudinal seismic response of tunnel liners with sharp stiffness transition[J]. Tunnelling and Underground Space Technology, 2018, 77:103-114.
[17]SHIBA Y, KAWASHIMA K, OBINATA N, et al. An evaluation method of longitudinal stiffness of shield tunnel linings for application to seismic response analyses[J]. Proceedings of Japan Society of Civil Engineering, 1988: 319-327.

相似文献/References:

[1]牛泽林,霍润科.黄土铁路隧道衬砌结构可靠性分析与研究[J].西安建筑科技大学学报(自然科学版),2012,44(02):193.[doi:10.15986/j.1006-7930.2012.02.008]
 NIU Ze-lin,HUO Run-ke.Reliability analysis on the lining structure of loess railway tunnel[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2012,44(02):193.[doi:10.15986/j.1006-7930.2012.02.008]
[2]邵珠山,吴 奎,杨跃宗,等.机器人暗挖施工隧道临时仰拱的安全性评价研究[J].西安建筑科技大学学报(自然科学版),2018,50(05):632.
 SHAO Zhushan,WU Kui,YANG Yuezong,et al.Research into the safety evaluation of tunnel temporary supporting structure with robot excavation[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2018,50(02):632.

备注/Memo

备注/Memo:
收稿日期:2022-07-11修改稿日期:2023-02-20
基金项目:国家自然科学基金项目(52108383); 中国博士后科学基金面上资助项目(2021M702626); 土木工程防灾国家重点实验室开放基金资助(SLDRCE21-02); 中央高校基本科研业务费专项资金资助(xzy012022075)
第一作者:张敬华(1993—),男,助理教授,主要从事地下结构地震动力问题研究. E-mail: zhang.j@xjtu.edu.cn
通信作者:袁 勇(1963—),男,教授,主要从事地下结构相关研究. E-mail: yuany@tongji.edu.cn
更新日期/Last Update: 2023-04-20