[1]董振平,黄新凯,雷永洁,等.冻融循环作用下承压混凝土冻胀应变研究[J].西安建筑科技大学学报(自然科学版),2023,55(04):515-519545.[doi:10.15986/j.1006-7930.2023.04.005 ]
 DONG Zhenping,HUANG Xinkai,LEI Yongjie,et al.Research on frost heaving strain of stressed concrete under freeze-thaw cycle[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(04):515-519545.[doi:10.15986/j.1006-7930.2023.04.005 ]
点击复制

冻融循环作用下承压混凝土冻胀应变研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
55
期数:
2023年04期
页码:
515-519545
栏目:
出版日期:
2023-10-26

文章信息/Info

Title:
Research on frost heaving strain of stressed concrete under freeze-thaw cycle
文章编号:
1006-7930(2023)04-0515-05
作者:
董振平黄新凯雷永洁刘西光牛荻涛
(西安建筑科技大学 土木工程学院,陕西 西安 710055)
Author(s):
DONG Zhenping HUANG Xinkai LEI Yongjie LIU Xiguang NIU Ditao
(College of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China)
关键词:
冻融损伤 应力水平 冻胀应变 残余应变
Keywords:
freeze thaw damage stress level frost heaving strain residual strain
分类号:
TU528.1
DOI:
10.15986/j.1006-7930.2023.04.005
文献标志码:
A
摘要:
对不同应力水平的混凝土圆柱体构件进行了冻融循环试验,在冻融循环过程中通过动态模拟法得到了冻融全过程混凝土冻胀应变的发展规律.试验结果表明:冻融循环过程中随温度降低冻胀应变不断增大,温度回升后冻胀应变随之降低.随着冻融循环次数的增加,钢筋有效应变逐渐降低,冻胀应变滞回环的上部包络线随之升高,残余应变不断增加; 随应力水平的增加,钢筋有效应变损失速率加快,冻胀应变逐渐降低.
Abstract:
The freeze-thaw cycle tests were carried out on concrete cylindrical members with different stress levels, and in the process of freeze-thaw cycle, the development law of frost heave strain of concrete in the whole process of freeze-thaw was obtained by dynamic simulation method. The experimental results showed that the frost heaving strain increased with the decrease of temperature during the freeze-thaw cycle, and decreased with the rise of temperature. With the increase of freeze-thaw cycles, the effective strain of reinforcement gradually decreased, the upper envelope of the freeze-heave strain hysteresis ring increased, and the residual strain increased. With the increase of stress level, the effective strain loss rate of reinforcement accelerated and the frost heaving strain decreased gradually.

参考文献/References:

[1]孙杰, 冯川, 吴爽, 等. 持续荷载与冻融循环耦合作用下纤维混凝土损伤性能研究[J]. 硅酸盐通报, 2022, 41(8): 2728-2738.
SUN Jie, FENG Chuan, WU Shuang, et al. Study on the damage performance of fiber reinforced concrete under the coupling action of continuous load and freeze-thaw cycles[J]. Bulletin of Silicate, 2022, 41(8): 2728-2738.
[2]ZHENG Yuanxun, LIU Jiaqi, GUO Pan, et al. Fatigue characteristics of double damage reinforced prestressed hollow slab beams under freeze-thaw cycle erosion[J]. Applied Sciences, 2021, 11(16): 7692.
[3]WANG Yu, FENG Wenkang, WANG Haijiang, et al. Rock bridge fracturing characteristics in granite induced by freeze-thaw and uniaxial deformation revealed by AE monitoring and post-test CT scanning[J]. Cold Regions Science and Technology, 2020, 177: 103-115.
[4]LEI Bin, LI Wwengui, TANG Zhuo, et al. Durability of recycled aggregate concrete under coupling mechanical loading and freeze-thaw cycle in salt-solution[J]. Construction and Building Materials, 2018, 163: 840-849.
[5]LEI Bin, LI Wengui, LI Zhaohang, et al. Effect of cyclic loading deterioration on concrete durability: water absorption, freeze-thaw, and carbonation[J]. Journal of Materials in Civil Engineering, 2018, 30(9): 04018220.
[6]关虓, 牛荻涛, 李强, 等. 冻融环境钢筋混凝土梁抗弯承载力研究[J]. 铁道学报, 2017, 39(11): 108-115.
GUAN Xiao, NIU Ditao, LI Qiang, et al. Research on flexural capacity of reinforced concrete beams in freezing-thawing environment[J]. Journal of the China Railway Society, 2017, 39(11): 108-115.
[7]LI Zhe, LIU Lulu, YAN Shihao, et al. Effect of freeze thaw cycles on mechanical and porosity properties of recycled construction waste mixtures[J]. Construction and Building Materials, 2019, 210: 347-363.
[8]关虓, 牛荻涛, 肖前慧.考虑残余强度修正的混凝土冻融损伤层及轴心受压模型研究[J]. 铁道学报, 2021, 43(3): 175-182.
GUAN Xiao, NIU Ditao, XIAO Qianhui. Study on freeze-thaw damaged layer and axial compression model of concrete considering residual strength modification[J]. Journal of the Chinese Railway Society, 201, 43(3): 175-182.
[9]姜磊, 牛荻涛. 硫酸盐与冻融复合作用下混凝土劣化规律[J]. 中南大学学报(自然科学版), 2016, 47(9): 3208-3216.
JIANG Lei, NIU Ditao. Deterioration law of concrete under composite action of sulfate and freeze-thaw[J]. Journal of Central South University(Science and Technology), 2016, 47(9): 3208-3216.
[10]陈妤, 刘荣桂, 蔡东升, 等. 冻融与氯盐侵蚀作用下预应力结构耐久性试验及数值模拟[J]. 建筑结构学报, 2010, 31(2): 104-110.
CHEN Yu, LIU Ronggui, CAI Dongsheng, et al. Durability test and numerical simulation of prestressed structures under freeze-thaw and chloride erosion[J]. Journal of Building Structures, 2010, 31(2): 104-110.
[11]王晨霞, 刘路, 曹芙波,等. 冻融循环后再生混凝土力学性能试验研究[J]. 建筑结构学报, 2020, 41(12): 193-202.
WANG Chenxia, LIU Lu, CAO Fubo, et al. Experimental study on mechanical properties of recycled concrete after freeze-thaw cycle[J]. Journal of Building Structures, 2020, 41(12): 193-202.
[12]姜磊, 牛荻涛. 硫酸盐与冻融环境下混凝土本构关系研究[J]. 四川大学学报(工程科学版), 2016, 48(3): 71-78.
JIANG Lei, NIU Ditao. Research on the constitutive relationship between sulfate and concrete under freeze-thaw environment[J]. Journal of Sichuan University(Engineering Science Edition), 2016, 48(3): 71-78.
[13]LI Yanlong, GUO Hanyan, ZHOU Heng, et al. Damage characteristics and constitutive model of concrete under uniaxial compression after Freeze-Thaw damage[J]. Construction and Building Materials, 2022, 345: 128-171.
[14]徐善华, 王友德, 李安邦, 等. 冻融损伤混凝土重复受压本构关系[J]. 哈尔滨工业大学学报, 2015, 47(4): 104-110.
XU Shanhua, WANG Youde, LI Anbang, et al. Constitutive relationship of freeze-thaw damaged concrete under repeated compression[J]. Journal of Harbin Institute of Technology, 2015, 47(4): 104-110.
[15]ZENG Qiang, LI Le, PANG Xiaoyun, et al. Freeze-thaw behavior of air entrained cement paste saturated with 10 wt.% NaCl solution[J]. Cold Regions Science and Technology, 2014, 102: 21-31.
[16]高志浩. 约束应力调控及其对混凝土单面盐冻行为的影响[D]. 北京:中国建筑材料科学研究总院, 2020.
GAO Zhihao. Regulation of confining stress and its effect on single side salt freezing behavior of concrete[D]. Beijing: China Building Materials Research Institute,2020.
[17]LV, Zhitao, XIA Caichu, WANG Yuesong, et al. Frost heave and freezing processes of saturated rock with an open crack under different freezing conditions[J]. Frontiers of Structural and Civil Engineering, 2020, 14(4): 947-960.

相似文献/References:

[1]王易安,雷永洁,刘西光,等.冻融损伤混凝土保护层锈胀开裂条件研究[J].西安建筑科技大学学报(自然科学版),2023,55(04):585.[doi:10.15986/j.1006-7930.2023.04.014 ]
 WANG Yian,LEI Yongjie,LIU Xiguang,et al.Research on rust expansion and cracking conditions of freeze-thaw damaged concrete protective layer[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(04):585.[doi:10.15986/j.1006-7930.2023.04.014 ]

备注/Memo

备注/Memo:
收稿日期:2022-11-11修回日期:2023-07-23
基金项目:国家自然科学基金项目(52178163 & 51808437); 陕西省重点研发基金项目(2022SF-403)
第一作者:董振平(1970—),男,博士,正高级工程师,主要研究既有结构的评定与加固.E-mail:dongzp_02@163.com
通信作者:刘西光(1984—),男,博士,副教授,主要从事混凝土耐久性的研究.E-mail:xgliu@xauat.edu.cn
更新日期/Last Update: 2023-08-28