[1]邵泽彪,蔡吕培,方天宇,等.基于光线分布与产能特性的建筑集成用聚光百叶设计[J].西安建筑科技大学学报(自然科学版),2023,55(06):919-926.[doi:10.15986/j.1006-7930.2023.06.016]
 SHAO Zebiao,CAI Lüpei,FANG Tianyu,et al.Design of solar concentrating louver for building integration based on light distribution and energy production characteristics[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(06):919-926.[doi:10.15986/j.1006-7930.2023.06.016]
点击复制

基于光线分布与产能特性的建筑集成用聚光百叶设计()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
55
期数:
2023年06期
页码:
919-926
栏目:
出版日期:
2023-12-28

文章信息/Info

Title:
Design of solar concentrating louver for building integration based on light distribution and energy production characteristics
文章编号:
1006-7930(2023)06-0919-08
作者:
邵泽彪1蔡吕培1方天宇1王博1孙良1朱国庆2
(1.中国矿业大学 建筑与设计学院,江苏 徐州 221116,2.中国矿业大学 安全工程学院,江苏 徐州 221116)
Author(s):
SHAO Zebiao1CAI Lüpei1 FANG Tianyu1 WANG Bo1 SUN Liang1 ZHU Guoqing2
(1.School of Architecture and Design, China University of Mining and Technology, Jiangsu Xuzhou 221116, China; 2.School of Safety Engineering, China University of Mining and Technology, Jiangsu Xuzhou 221116, China)
关键词:
太阳能聚光百叶光线分布产能特性层级利用
Keywords:
solar concentrating louver light distribution energy production characteristics hierarchical utilization
分类号:
TU375.1
DOI:
10.15986/j.1006-7930.2023.06.016
文献标志码:
A
摘要:
建筑集成聚光光伏可将直射光线用于产能,散射光线用于采光。为提高聚光组件对天然光线的层级利用效率,对线性菲涅尔透镜和接收器在不同距离及不同偏差角度下的光学特性及产能特性进行实验研究,最终确定聚光百叶设计的接收器间距、宽度及允许偏差角度三个关键参数。结果表明:对于所选用的80 mm宽的线性菲涅尔透镜,当太阳光线处于无偏差入射状态时,50 mm间距下光斑会聚最为集中,宽度为2.5 mm。对于以砷化镓太阳能电池作为接收器的电学性能实验结果表明:光斑均匀性对其最大功率影响不明显。为达到“采光-产能”的平衡,确定选择10 mm宽聚光太阳能电池作为聚光百叶单元接收器,菲涅尔透镜与接收器的推荐距离为50~53 mm,聚光百叶在4°以内的偏差范围内均可以正常工作。本研究可为建筑集成用聚光组件的设计提供参考。
Abstract:
Direct light can be used for energy production and diffused light for daylighting when the concentrating photovoltaics are integrated in the building. The optical and energy production characteristics of linear Fresnel lens and receiver were analyzed experimentally through experiments at different spacings and different deviation angles. The optimum values for key parameters of the receiver spacing, width and allowable deviation angle of the concentrating louver are determined to improve the hierarchical utilization efficiency of natural light. The results showed that for the selected linear Fresnel lens with a width of 80mm, when the solar rays were in unbiased incidence, the light spot was the most concentrated at the distance of 50 mm, and the width was 2.5 mm. The electrical experimental results of GaAs solar cells as receivers show that uniformity of the light spot is not obvious influence on maximum power. In order to achieve the balance of daylighting and energy production, it is recommended to choose 10 mm wide concentrating solar cells as the concentrating louver receiver. The recommended spacing between Fresnel lens and the receiver is 50 mm~53 mm, and the louver can work normally within the deviation range of 4°. This study can provide a reference for the design of concentrating components for building integration.

参考文献/References:

[1]武艳丽,郭庆娜,梁征,等.严寒地区展馆建筑产能设计探索与实践[J].建筑技术,2022,53 (10):1340-1342.

 WU Yanli, GUO Qingna, LIANG Zheng, et al. Exploration and practice of exhibition building energy production design in severe cold region[J]. Architecture Technology, 2022,53 (10):1340-1342.
[2]徐伟.中国近零能耗建筑研究和实践[J].科技导报, 2017,6(10):40-45.
 XU Wei. China near zero energy building research practice[J]. Technology Guide, 2017,6(10): 40-45
[3]王智刚,李立,赵峰,等.关中地区公共建筑近零能耗关键技术研究[J].西安建筑科技大学学报(自然科学版),2022,54(5):718-727.
 WANG Zhigang, LI Li, ZHAO Feng, et al. Key technologies of nearly zero energy for public building in Guanzhong[J]. J. of Xi′an Univ. of Arch. & Tech.(Natural Science Edition),2022,54(5):718-727.
[4]朱静,马明一,李丕,等.自然通风模式及光伏透过率对双层皮幕墙冬季运行特性影响研究[J].西安建筑科技大学学报(自然科学版),2021,53(6):939-946.
 ZHU Jing, MA Mingyi, LI Pei, et al. Study on effect of natura ventilation mode and photovoltaic transmittance on the performance of double-skin facade in winter[J]. J. of Xi′an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(6):939-946.
[5]VALENCIA-SOLARES M E, GIJON-RIVERA M, CARLOS I Rivera-Solorio. Energy, economic, and environmental assessment of the integration of phase change materials and hybrid concentrated photovoltaic thermal collectors for reduced energy consumption of a school sports center[J]. Energy and Buildings, 2023, 293, 113198.
[6]DANIEL Chemisana. Building integrated concentrating photovoltaics: A review[J]. Renewable and Sustainable Energy Reviews,2011,15(1): 603-611.
[7]DANIEL Chemisana, Ibáez. Linear fresnel concentrators for building integrated applications[J]. Energy Conversion and Management,2010,51(7): 1476-1480.
[8]NICK Novelli, KENTON Phillips, JUSTIN Shultz, et al. Experimental investigation of a building integrated, transparent concentrating photovoltaic and thermal collector[J]. Renewable Energy, 2021, 176: 617-634.
[9]RANGA Vihari-Parupudi, HARJIT Singh, MARIA Kolokotroni. Low concentrating photovoltaics (LCPV) for buildings and their performance analyses[J]. Applied Energy,2020,279.
[10]ARVIND Singhy, ROBIN Thakur, RAJ Kumar. Experimental analysis for cogeneration of heat and power with convex lens as SOE and linear Fresnel Lens as POE using active water stream[J]. Renewable Energy,2021,163:740-754.
[11]LIU Xiao, WU Yupeng. Design, development and characterisation of a building integrated concentrating photovoltaic (BICPV) smart window system[J]. Solar Energy, 2021, 220: 711-734.
[12]KATIE Shanks, ASHLEY Knowles, ADAM Brierley, et al. An experimental analysis of the optical, thermal and power to weight performance of plastic and glass optics with AR coatings for embedded CPV windows[J]. Solar Energy Materials and Solar Cells, 2019, 200:110027.
[13]SUN Yanyi, LIU Dingming, FLOR Jan-Frederik, et al. Analysis of the daylight performance of window integrated photovoltaics systems[J]. Renewable Energy, 2019, 145:153-163.
[14]邵泽彪,朱丽.动态聚光建筑表皮设计与光热特性研究[J].建筑实践, 2019(2): 32-33.
 SHAO Zebiao, ZHU Li. Dynamic solar concentration building skin design and photo-thermal characteristics research[J]. Architectural Practice, 2019(2): 32-33.
[15]朱丽,陈孟栋,邵泽彪,等. 建筑一体化500倍聚光组件光电特性实验与模拟研究[J]. 太阳能学报, 2021, 42(4): 247-252.
 ZHU Li, CHEN Mengdong, SHAO Zebiao, et al. Experimental and simulation study on optical and electrical properties of building integrated 500x solar concentrating photovoltaic module[J]. Acta Energiae Solaris Sinica, 2021, 42(4): 247-252.
[16]陈海飞,蔡宝瑞,何文成,等.太阳能 CPC 聚光建筑屋顶热电性能及建筑节能的理论研究[J].暖通空调,2020,50(8):116-122.
 CHEN Haifei, CAI Baorui, HE Wencheng, et al. Theoretical study on thermoelectric performance and building energy efficiency of solar CPC concentrating building roofs[J]. Heating Ventilating & Air Conditioning, 2020,50(8):116-122.
[17]XUAN Qingdong, LI Guiqiang, ZHAO Bin, et al. Evaluation of the smart daylighting control performance of the concentrating photovoltaic/daylighting system as the skylight in the building[J]. Solar Energy,2022,238:17-29.
[18]XUAN Qingdong, LI Guiqiang, LU Yashun, et al. Daylighting utilization and uniformity comparison for a concentratorphotovoltaic window in energy saving application on the building[J]. Energy, 2021, 214:1-13.
[19]XUAN Qingdong, LI Guiqiang, JIANG Bin, et al. Analysis and quantification of effects of the diffuse solar irradiance on the daylighting performance of the concentrating photovoltaic/daylighting system[J]. Building and Environment, 2021, 193:1-13.
[20]HONG Ming, FENG Chaoqing, XU Zhao, et al. Performance study of a new type of transmissive concentrating system for solar photovoltaic glass curtain wall[J]. Energy Conversion & Management, 2019, 201(12):112167.1-112167.12.
[21]洪铭,冯朝卿,郑宏飞,等.用于玻璃幕墙的透射式太阳能聚光系统研究[J].太阳能学报,2020,41(1):7-13.
 HONG Ming, FENG Chaoqing, ZHENG Hongfei, et al. Study of transmissive solar concentrating system for glass curtain wall[J]. Acta Energiae Solaris Sinica,2020,41(1):7-13.
[22]SHAO Zebiao, WANG Bo, CAO Lvpei, et al. Optical and thermal performance of dynamic concentrating solar module for building integration[J]. Journal of Cleaner Production. 2022, 367:132931.
[23]SAMUELE Memme, MARCO Fossa, Ray tracing analysis of linear Fresnel concentrators and the effect of plant azimuth on their optical efficiency[J]. Renewable Energy, 2023, 216: 119121.

备注/Memo

备注/Memo:
收稿日期:2023-02-15修回日期:2023-09-13
基金项目:江苏省自然科学基金资助项目(BK20210517)
第一作者:邵泽彪(1988—),男,博士,讲师,主要从事太阳能建筑方面的研究.E-mail: shaozebiao@cumt.edu.cn
通信作者:朱国庆(1968—),男,博士,教授,主要从事建筑性能化防火方面的研究.E-mail: zgq119xz@126.com
更新日期/Last Update: 2024-02-07