[1]袁 俊,王虎长,胡建民,等.1000kV 大跨越输电线路钢管塔风振响应及振动控制研究[J].西安建筑科技大学学报:自然科学版,2014,46(03):360-366.[doi:10.15986/j.1006-7930.2014.03.010]
 YUAN Jun,WANG Huchang,HU Jianmin,et al.Wind-induced dynamic response and vibration control of steel tubular tower in the 1000 kV large span crossing transmission line[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2014,46(03):360-366.[doi:10.15986/j.1006-7930.2014.03.010]
点击复制

1000kV 大跨越输电线路钢管塔风振响应及振动控制研究()
分享到:

西安建筑科技大学学报:自然科学版[ISSN:1006-7930/CN:61-1295/TU]

卷:
46
期数:
2014年03期
页码:
360-366
栏目:
出版日期:
2014-06-30

文章信息/Info

Title:
Wind-induced dynamic response and vibration control of steel tubular tower in the 1000 kV large span crossing transmission line
文章编号:
1006-7930(2014)03-0360-07
作者:
袁 俊王虎长胡建民王学明沈巍巍
( 西北电力设计院,陕西 西安 710075 )
Author(s):
YUAN Jun WANG Huchang HU Jianmin WANG Xueming SHEN Weiwei
( Northwest Electric Power Design Institute, Xi’an 710075, China )
关键词:
铁塔交流输电线路大跨越风振响应振动控制阻尼器
Keywords:
tower AC transmission line large span crossing wind-induced dynamic response vibration control damper
分类号:
TU 392.3
DOI:
10.15986/j.1006-7930.2014.03.010
文献标志码:
A
摘要:
采用Davenport 风谱模拟作用在大跨越输电线路钢管塔空间节点上的随机脉动风激励,并建立1 000 kV 大跨越钢管塔的Ansys 有限元模型,分析其动力特性和风振响应特征.基于钢管塔的动力分析结果,选取了调谐质量阻尼器减振、粘弹性阻尼器减振、粘弹性阻尼器与调谐质量阻尼器组合减振的三种控制方案,并评价了不同方案的减振效果.结果表明,单独采用质量阻尼器进行风振控制的效果略优于单独采用粘弹性阻尼器的方案,但优势并不显著,罕遇工况下易造成动力放大效应.调谐质量阻尼器与粘弹性阻尼器联合控制方案中,由于控制扭转的调谐质量.
Abstract:
A finite element model with ANSYS was created for an analysis of wind-induced response and vibration control of steel tubular tower in the 1000 kV large span crossing transmission line. Randomly fluctuating wind on spatial joints of the model was simulated using Davenport spectrum. Based on analysis of tubular tower dynamic characteristics and wind-induced response, three vibration control systems were used: tuned mass dampers (TMD), viscoelastic dampers (VED), TMD-VED were discussed to assess the vibration isolation effectiveness of vibration countermeasures in large-span crossing transmission tower. The result demonstrates that the damping performance of TMD is better than the VED, with limited significance, having adverse effects of dynamic magnification in accident causes. TMD with small mass in TMD-VED system offers limited effect for control torsional vibration. It is further shown that, VED is most viable method for reduction of wind-induced response, providing an approximately 9%~13% reduction of displacement responses and 20%~30% reduction of acceleration responses on tower body.

参考文献/References:

[1] RONALDO C B, ROSANGELA S Rodrigues, MICHELE S P. Dynamic behavior and stability of transmission line towers under wind forces[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91: 1051-1067.

[2] ALBERMANI F, KITIPORNCHAI S, CHAN R W K. Failure analysis of transmission towers[J]. Engineering Failure Analysis, 2009, 16: 1922-1928.

[3] OKAMURA T, OHKUMA T, HONGO E, et al. Wind response analysis of a transmission tower in a mountainous area[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91: 53-63.

[4] 林友新, 周翠, 李宏男, 等. 单元模态应变能法在输电铁塔损伤识别中的应用[J]. 防灾减灾工程学报, 2013, 33(1): 102-107.

LIN Youxin, ZHOU Cui, LI Hongnan, et al. Application of element modal strain energy method in damage identification of transmission tower[J]. Journal of disaster prevention and mitigation engineering, 2013, 33(1): 102-107.

[5] PRASAD R N, SAMUEL K G M, LAKSHMANAN N, et al. Investigation of transmission line tower failures[J]. Engineering Failure Analysis, 2010, 17: 1127-1141.

[6] PARK J H, MOON B W, MIN K W, et al. Cyclic loading test of friction-type reinforcing members upgrading wind-resistant performance of transmission towers[J]. Engineering Structures, 2007, 29: 3185-3196.

[7] 黄本才, 汪丛军. 结构抗风分析原理及应用[M]. 2 版. 上海: 同济大学出版社, 2008.

HUANG Bencai, WANG Congjun. Analysis principle and application of wind-resistant structure[M]. 2nd ed. Shanghai: Tongji University Press, 2008.

[8] 周云. 结构风振控制的设计方法与应用[M]. 北京: 科学出版社, 2009.

ZHOU Yun. Wind-induced structure vibration control design method and its application[M]. Beijing: Science Press, 2009.

[9] 李爱群. 工程结构减振控制[M]. 北京: 机械工业出版社, 2007.

LI Aiqun. Vibration control of engineering structures[M]. Beijing: China Machine Press, 2007.

[10] DYRBYE C, HANSEN S O. Wind loads on structures[M]. New York: John Wiley & Sons Ltd., 1996.

[11] DAVERNPORT A G. Wind loads on structures[R]. National Research Council, 1960.

[12] Holmes J. Wind loading structures[M]. 2nd ed New York: Taylor &Francis, 2007.

[13] 杨靖波, 韩军科, 华旭刚, 等. 1000 kV淮南—上海输变电工程同塔双回钢管塔风振控制[J]. 中国电机工程学报, 2010, 30(7): 104-110.

YANG Jingbo, HAN Junke, HUA Xungang, et al. Wind-induced vibration suppression of tubular towers for 1000 kV double-circuit transmission lines on the same tower from Huainan to Shanghai[J]. Proceedings of the CSEE, 2010, 30(7): 104-110.

[14] SOONG T T, DARGUSH G F. Passive energy dissipation systems in structural engineering[M]. Chichester: John Wiley & Sons Ltd., 1997.

备注/Memo

备注/Memo:
收稿日期:2013-12-11 修改稿日期:2014-06-10
基金项目:中国电力工程顾问集团科技项目(DG1-T02-2012);西北电力设计院科技项目(XB1-TM05-2013)
作者简介:袁俊(1983-),男,博士,从事结构与环境振动分析及控制研究.E-mail: j.yuan@hotmail.com
更新日期/Last Update: 2015-09-01