[1]刘金颂,张庆阳,原思聪(.基于SIFT 和LTP 的图像匹配方法[J].西安建筑科技大学学报:自然科学版,2014,46(05):762-768.[doi:10.15986/j.1006-7930.2004.]
 LIU Jinsong,ZHANG Qingyang,YUAN Sicong.Image matching using SIFT and rotation invariant uniform LTP[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2014,46(05):762-768.[doi:10.15986/j.1006-7930.2004.]
点击复制

基于SIFT 和LTP 的图像匹配方法()
分享到:

西安建筑科技大学学报:自然科学版[ISSN:1006-7930/CN:61-1295/TU]

卷:
46
期数:
2014年05期
页码:
762-768
栏目:
出版日期:
2014-10-31

文章信息/Info

Title:
Image matching using SIFT and rotation invariant uniform LTP
文章编号:
1006-7930(2014)05-0762-07
作者:
刘金颂1张庆阳2原思聪1(
(1.西安建筑科技大学机电工程学院, 陕西 西安 710055;2. 西安陕鼓动力股份有限公司设计部, 陕西 西安 710075)
Author(s):
LIU Jinsong1 ZHANG Qingyang2 YUAN Sicong1
(1.School of Mechanical & Electrical Engineering, Xi’an Univ. of Arch. & Tech., Xi’an 710055, China;
2.Xi’an Shaangu Power Co., LTD., Xi’an 710075, China)
关键词:
图像匹配SIFTLBP算子LTP算子
Keywords:
image matching SIFT local binary pattern local ternary pattern
分类号:
TP391
DOI:
10.15986/j.1006-7930.2004.
文献标志码:
A
摘要:
针对SIFT算法计算复杂度高,提出了一种SIFT(Scale Invariant Feature Transform)和旋转不变LTP(Local Ternary Pattern)
特征相结合的图像匹配方法,以提高SIFT 算法的速度.首先利用SIFT 算法在两幅需要匹配的图像上分别检测出关键点;
然后计算每个关键点周围的旋转不变LTP 特征,并作为该关键点的描述子;最后找出两个关键点对之间的匹配点对.实验
结果表明,本方法对于图像的匹配性能与SIFT算法相当,运算速度比SIFT算法较快.
Abstract:
In view of high computational complexity of SIFT (scale invariant feature transform), a new stereo matching algorithm
based on SIFT and the rotation-invariant LTP (local ternary pattern) is proposed. Firstly, two sets of key-points are extracted from the
two images for matching by utilizing the SIFT algorithm; secondly, the rotation-invariant LTP feature of each key-point is computed,
which as the descriptor of the key-point; finally, the matching pairs between the two sets of key-points are determined. The result is
compared with the SIFT algorithm in stereo image matching. It is observed that the matching performance by using the SIFT and
LTP is the same as the SIFT, and the calculating speed is faster than SIFT.

参考文献/References:

参考文献 References
[1] LINDEBERG Tony. Scale-space theory: a basic tool for analysing structures at different scales[J]. Journal of Applied
Statistics,1994, 21 (2):224-270.
[2] DUFOURNAUD Y, SCHMID C, HORAUD R. Image matching with scale adjustment[J]. Computer Vision and Image
Understanding, 2004, 93 (2):175-194.
[3] ESPIAU F, RIVES P. Extracting robust features and 3D reconstruction in underwater images[C] //Proceedings OCEANS, 2001:
2564-2569.
[4] MIKOLAJCZYK K, SCHMID C. Scale and affine invariant interest point detectors[J]. International Journal of Computer
Vision, 2004, 60 (1):63-86.
[5] MIKOLAJCZYK K, SCHMID C. A performance evaluation of local descriptors[J]. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2005, 27(10): 1615-1630.
[6] DAVID G. Lowe. Distinctive Image Features from Scale-Invariant key-points[J]. International Journal of Computer Vision,
2004, 60(2):91-101.
[7] KE Y, SUKTHANKAR R. PCA-SIFT: a more distinctive representation for local image descriptors[C]//IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, Washington, USA, 2004: 506-513.
[8] DELPONTE E, FRANCESCO I, et al. SVD-matching using SIFT features[C]//Proceedings of the International Conference on
Vision, Video and Graphics, Edinburgh, 2005: 125-132.
[9] HEIKKILÄ M, PIETIKÄINEN M, SCHMID C. Description of interest regions with local binary patterns[J]. Pattern
Recognition, 2009, 42(3): 425-436.
[10] 郑永斌,黄新生,丰松江. SIFT 和旋转不变LBP 相结合的图像匹配算法[J].计算机辅助设计与图形学学报,2010, 22(2):
286-292.
ZHENG Yongbin, HUANG Xinsheng, FENG Songjiang. An image matching algorithm based on combination of SIFT and the
rotation invariant LBP[J]. Journal of Computer-Aided Design & Computer Graphics, 2010, 22(2):286-292.
[11] OJALA T, PIETIKÄINEN M, MAENPÄÄ T. Multiresolution gray-scale and rotation invariant texture classification with local
binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24 (7):971-987.
[12] TAN X., TRIGGS B. Enhanced local texture feature sets for face recognition under difficult lighting conditions[C].
Proceedings of the 3rd international conference on Analysis and Modeling of Faces and Gestures, Rio de Janeiro, Brazil,
2007:168-182.

相似文献/References:

[1]介 军,李智杰,姚 鹏.改进的RANSAC匹配点提纯算法[J].西安建筑科技大学学报:自然科学版,2013,45(06):896.[doi:10.15986/j.1006-7930.2013.06.025]
 JIE Jun,LI Zhi-jie,YAO Peng.Improved RANSAC algorithm of matched points purifying[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2013,45(05):896.[doi:10.15986/j.1006-7930.2013.06.025]

备注/Memo

备注/Memo:
收稿日期:2013-10-16 修改稿日期:2014-10-09
基金项目:国家“十二五”科技支撑计划重点项目(2011BAJ02B02,2011BAJ02B02-02);陕西省科技攻关项目(2011K10-18);西安建筑科技大学青年
科技基金项目(QN1426)
作者简介:刘金颂(1981-),女,博士,工程师,主要从事机器视觉方面的研究.Email:liujs1222@163.com
更新日期/Last Update: 2015-10-10