[1]胡晓鹏,孙广帅,张成中,等.混凝土早期碳化性能的试验研究[J].西安建筑科技大学学报(自然科学版),2017,49(04):492-496.[doi:10.15986/j.1006-7930.2017.04.005]
 HU Xiaopeng,SUN Guangshuai,ZHANG Chengzhong,et al.Experimental study on early carbonation of concrete[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2017,49(04):492-496.[doi:10.15986/j.1006-7930.2017.04.005]
点击复制

混凝土早期碳化性能的试验研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
49
期数:
2017年04期
页码:
492-496
栏目:
出版日期:
2017-09-10

文章信息/Info

Title:
Experimental study on early carbonation of concrete
文章编号:
1006-7930(2017)04-0492-05
作者:
胡晓鹏孙广帅张成中张永利
(西安建筑科技大学 土木工程学院,陕西 西安710055)
Author(s):
HU Xiaopeng SUN Guangshuai ZHANG Chengzhong ZHANG Yongli
(School of Civil Engineering, Xian Univ. of Arch . & Tech ., Xian 710055, China)
关键词:
混凝土早期碳化深度PH值测试物质成分分析渗透性
Keywords:
concrete early carbonation depth pH value test material composition analysis permeability
分类号:
TQ174.75
DOI:
10.15986/j.1006-7930.2017.04.005
文献标志码:
A
摘要:
通过自然暴露条件下的混凝土早期碳化试验,研究了不同养护时间混凝土早期碳化深度、孔溶液pH值随龄期的变化规律,分析了混凝土早期碳化过程中物质成分的变化规律,探讨了混凝土早期碳化对渗气性和渗水性的影响规律.研究表明:混凝土的碳化深度在浇筑后的90 d内发展极快,混凝土龄期为90~180 d时早期碳化深度发展较慢且混凝土不同程度出现回碱现象,混凝土龄期达到180 d后碳化深度继续发展;从试块表面向内部方向,pH值快速增大,pH值增大速度随着试件深度的增加逐渐变缓,最终pH值趋于定值;沿砂浆侧面向内部延伸,CaCO3含量逐渐减少并趋于定值而Ca(OH)2含量逐渐增大并趋于定值;随着养护时间的延长,混凝土的早期碳化发展速度减慢,各层混凝土孔溶液中的pH值逐渐增大且增大量随着试件深度的增加而减小,混凝土的渗气性先减弱后增强,混凝土的渗水性先微弱增强后明显减弱
Abstract:
Through early carbonation test of concrete in conditions of natural exposure, the changes laws of early carbonation depth and pore solution pH value with concrete age under different curing time were studied, the change laws of material composition in process of early concrete carbonation were analyzed, and the influence laws of early concrete carbonation on gas permeability and water permeability were discussed . The research results show that the carbonation depth develops fast within concrete age of 90 d after concrete casting time, the carbonation depth develops slow and the alkali phenomenon occurs when the concrete age changes from 90 d to 180 d, the carbonation depth continues to develop after the concrete age reaches 180d . The pH value increases rapidly from surface to internal direction of the specimen, the increase rate of the pH value becomes slow gradually with the increasing of specimen depth and the pH value reaching a certain value in the deep of specimen . Extending along the side of mortar specimen, the CaCO3 content gradually decreases and tends to reach a certain value, while the Ca(OH)2 content gradually increases and tends to reach a certain value. With the increase of curing time, the development speed of early carbonation depth slows down; the pH values of pore solution in each layer increase gradually; the growth amount of the pore solution pH value decreases with increase of the specimen depth; the gas permeability of concrete decreases first and then increases; and the water permeability of the concrete increases slightly and then decreases obviously

参考文献/References:

References

[1]童寿兴.混凝土假性碳化引起回弹法强度的误判[J].无损检测.2006,28(5):406-408.

TONG Shouxing. Miscarriage of justice of rebound method strength test caused by pseudo -carbonation of concrete[J]. Non -destructive Test.2006, 28 (5): 406-408.

[2]廉慧珍.质疑/回弹法检测混凝土抗压强度[J].混凝土, 2007(9): 1-4.

LIAN Huizhen. Challenge/rebound method for testing concrete compressive strength [J]. Concrete, 2007 (9): 1 -4.

[3]王海潮, 吕莉.混凝土假性碳化引起回弹法检测强度的误判[J].建筑技术开发, 2015, 42(12):35-36.

WANG Haichao,L Li. Concrete strength misjudgment caused by spurious carbonization in rebound method [J]. Building Technique Development, 2015, 42(12) :35-36.

[4]都增延.预防混凝土早期开裂及过早碳化的技术措施[J].商品混凝土,2009(8):57-60.

DOU Zengyan.Technical measures of prevention of concrete crack and carbonization [J].Ready-mixed Concrete, 2009(8):57-60.

[5]张令茂, 江文辉.混凝土自然碳化及其与人工加速碳化的相关性研究[J].西安冶金建筑学院学报,1990,22(3): 207-221.

ZHANG Lingmao, JIANG Wenhui. Study on carbonation of concrete in natural condition and its correlation with artificial accelerated carbonation [J].J. Xi′an Univ . of Arch . & Tech .1990,22(3):207-221.

[6]胡晓鹏, 牛荻涛, 张永利.粉煤灰混凝土早期碳化规律研究[J].西安建筑科技大学学报(自然科学版),2012,44(6): 805-810.

HU Xiaopeng, NIU Ditao, ZHANG Yongli. Experimental analysis on early carbonization rule of fly ash concrete [J]. J . Xi′an Univ . of Arch . & Tech .(Natural Science Edition).2012,44(6):805-810.

[7]阿茹罕, 阎培渝.不同粉煤灰掺量混凝土的碳化特性[J].硅酸盐学报, 2011,39(1):7-12.

A Ruhan, YAN Peiyu. Carbonation characteristics of concrete with different fly -ash contents[J]. Journal of the Chinese Ceramic Society ,2011,39(1):7-12.

[8]胡建军.掺粉煤灰和矿渣粉混凝土的碳化行为及其影响因素的研究[D].北京:清华大学,2010.

HU Jianjun. Studies on carbonation behavior of concrete mixed with fly ash and granulated blast furnace slag and its influencing factors [D]. Beijing:Tsinghua University , 2010 .

[9]贾耀东.大掺量矿物掺合料混凝土的碳化特性研究[D].北京:清华大学,2010.

JIA Yaodong. Research on carbonation characteristics of high volume mineral admixtures concrete [D]. Beijing: Tsinghua University, 2010 .

[10]中华人民共和国住房与城乡建设部.普通混凝土长期性能和耐久性能试验方法:GBT50082-2009[S].北京:中国建筑工业出版社,2009.

Ministry of Housing and Urban-Rural Development of the People′s Republic of China. Standard for test methods of long -term performance and durability of ordinary concrete:GBT50082-2009[S].Beijing:China Architecture & Building Press,2009 .

[11]黄利频,郑建岚.测试混凝土孔溶液的pH值研究混凝土的碳化性能[J].福州大学学报,2012,40(6):794-799.

HUANG Lipin, ZHENG Jianlan. Study on the carbonation performance of concrete by testing the pH value of concrete pore solution [J].Journal of Fuzhou University (Natural Science Edition), 2012, 40(6):794-799.

[12]RASANEN V ,PENTTALA V . The pH measurement of concrete and smoothing mortar using a concrete powder suspension [J]. Cement and Concrete Research, 2004, 34(5): 813 -820.

[13]杨南如.无机非金属材料测试方法[M].武汉: 武汉工业出版社, 1990.

YANG Nanru. Test method for inorganic non -metallic materials[M]. Wuhan: Wuhan Industry Press ,1990.

[14]徐飞,陈正,莫林.混凝土碳化试验与碳化深度测定方法的对比分析[J].工程与试验,2013,53(4):27-31.

XU Feng, CHEN Zheng, MO Lin. Comparative analysis of experimental methods for concrete carbonation and measuring methods for carbonation depth [J]. Engineering and Test, 2013,53(4):27-31.

[15]TAYLOR H F W. Cement Chemistry [M].2nd.ed. London: Thomas Telford Publishing ,1997.

相似文献/References:

[1]丁红岩,梁玉国,高天宝,等.基于可靠度理论的无机胶植筋设计方法[J].西安建筑科技大学学报(自然科学版),2015,47(01):6.[doi:10.15986/j.1006-7930.2015.01.002]
 DING Hongyan,LIANG Yuguo,GAO Tianbao.The design method of inorganic glue bonded rebars based on reliability theory[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2015,47(04):6.[doi:10.15986/j.1006-7930.2015.01.002]
[2]于本田,王起才,周立霞,等.兰新铁路第二双线混凝土矿物掺合料掺量优化试验研究[J].西安建筑科技大学学报(自然科学版),2012,44(03):351.[doi:10.15986/j.1006-7930.2012.03.008]
 YU Ben-tian,WANG Qi-cai,ZHOU Li-xia,et al.Optimization research on the contents of mineral admixture of concrete in the 2nd double line of Lanzhou-Xinjiang Railway[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2012,44(04):351.[doi:10.15986/j.1006-7930.2012.03.008]
[3]马中军,谈志诚,张 铟.混凝土桥梁应变的区间型预警阈值设定[J].西安建筑科技大学学报(自然科学版),2013,45(04):526.[doi:10.15986/j.1006-7930.2013.04.011]
 MA Zhong-jun,TAN Zhi-cheng,ZHANG Yin.Interval strain threshold setting method for early warning of concrete bridge[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2013,45(04):526.[doi:10.15986/j.1006-7930.2013.04.011]
[4]侯 炜,贺拴海,张 岗.防火涂层对高温后混凝土抗压强度的影响[J].西安建筑科技大学学报(自然科学版),2014,46(02):241.[doi:10.15986/j.1006-7930.2004.02.015]
 HOU Wei,HE Shuanhai,ZHANG Gang.Effects of fire protection layer on compressive strength of concreteafter high temperature[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2014,46(04):241.[doi:10.15986/j.1006-7930.2004.02.015]
[5]韦 俊,孟 浩,薛圣广.钢筋不均匀锈蚀引起的混凝土保护层开裂有限元分析[J].西安建筑科技大学学报(自然科学版),2011,43(05):747.[doi:DOI :10.15986/j .1006-7930.2011.05.019]
 WE I J un,MENG Hao,XUE Sheng-guang.FEM analysis on the crack process of concrete coverinduced by non-uniform corrosion of re-bar[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2011,43(04):747.[doi:DOI :10.15986/j .1006-7930.2011.05.019]
[6]牛荻涛,陆炫毅,苗元耀,等.盐雾环境下疲劳损伤混凝土氯离子扩散性能[J].西安建筑科技大学学报(自然科学版),2015,47(05):617.[doi:DOI:10.15986/j.1006-7930.2015.05.001]
 NIU Ditao,LU Xuanyi,MIAO Yuanyao,et al.Diffusion of chloride ions into fatigue-damaged concrete in salt spray environment[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2015,47(04):617.[doi:DOI:10.15986/j.1006-7930.2015.05.001]
[7]朱方之1,马志鸣2,蒋连接1,等.持载和冻融循环对钢筋混凝土粘结性能的影响[J].西安建筑科技大学学报(自然科学版),2016,48(05):643.[doi:10.15986/j.1006-7930.2016.05.005]
 ZHU Fangzhi,MA Zhiming,JIANG Lianjie,et al.Study of influence of sustained load and freeze-thaw cycling on the bond behavior of steel reinforced concrete[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2016,48(04):643.[doi:10.15986/j.1006-7930.2016.05.005]
[8]李晓琴,陈前均,陈保淇,等.混凝土SHPB试验端面摩擦效应研究[J].西安建筑科技大学学报(自然科学版),2018,50(02):209.[doi:10.15986/j.1006-7930.2018.05.009]
 LI Xiaoqin CHEN Qianjun CHEN Baoqi TAO Yi.Study on concrete SHPB tests with interface friction effects[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2018,50(04):209.[doi:10.15986/j.1006-7930.2018.05.009]
[9]苗元耀,牛荻涛,程雪莉.钢筋混凝土桥梁疲劳荷载模型及应力水平研究[J].西安建筑科技大学学报(自然科学版),2018,50(04):500.[doi:10.15986/j.1006-7930.2018.04.006]
 MIAO Yuanyao,NIU Ditao,CHENG Xueli.Study on fatigue load model and stress level of the reinforeed concrete bridge[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2018,50(04):500.[doi:10.15986/j.1006-7930.2018.04.006]
[10]董振平,王静,胡晓鹏,等.施工期混凝土力学性能的试验研究[J].西安建筑科技大学学报(自然科学版),2018,50(06):788.[doi:10.15986/j.1006-7930.2018.06.004]
 DONG Zhenping,WANG Jing,HU Xiaopeng,et al.Experimental study on mechanical properties of concrete during construction period[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2018,50(04):788.[doi:10.15986/j.1006-7930.2018.06.004]

备注/Memo

备注/Memo:
收稿日期:2016-09-13修改稿日期:2017-07-15
基金项目:国家自然科学基金(51308441,51678473);陕西省自然科学基础研究计划(2016JM5073);陕西省教育厅专项科研计划(2013JK0951)
第一作者:胡晓鹏(1980-),男,博士,副教授,主要研究混凝土结构耐久性.E-mail:shs339@sina.com
更新日期/Last Update: 2017-09-11