[1]LI G Y, MA W, MU Y H, et al. Effects of freezethaw cycle on engineering properties of loess used as road fills in seasonally frozen ground regions, North China[J]. Journal of Mountain Science, 2017, 14(2): 356-368.[2]QI, J L, PIETER A V, CHENG G D. A review of the influence of freezethaw cycles on soil geotechnical properties[J]. Permafrost and Periglacial Processes, 2006, 17: 245-252.
[3]ZHOU Z, MA W, ZHANG S, et al. Damage evolution and recrystallization enhancement of frozen loess[J]. International Journal of Damage Mechanics, 2018, 27(8): 1131-1155.
[4]刘华, 胡鹏飞, 王梦南, 等. 冻融循环对酸污染黄土抗拉特性劣化试验研究[J]. 西安建筑科技大学学报:自然科学版, 2021, 53(4): 493-501.
LIU Hua, Hu Pengfei, Wang Mengnan, et al. Experimental study on degradation of tensile properties of acidcontaminated loess by freezethaw cycles[J]. J. Xi′an Univ. of Arch. & Tech.(Natural Science Edition), 2021, 53(4): 493-501.
[5]ZHANG H, ZHANG Z, ZHANG K, et al. Effects of freezethaw on the waterheat process in a loess subgrade over a cutfill transition zone by laboratory investigation[J]. Cold Region Science and Technology, 2019, 164: 1027.
[6]许健, 郑翔, 张辉. 黄土地区边坡冻融剥落病害机理及稳定性分析[J]. 西安建筑科技大学学报:自然科学版, 2018, 50(4): 477-484.
XU Jian, ZHENG Xiang, ZHANG Hui. Analysis on mechanism and stability of freeze-thaw spalling disease for slope in loess region[J]. J. Xi′an Univ. of Arch. & Tech.(Natural Science Edition), 2018, 50(4): 477-484.
[7]胡再强, 刘寅, 李宏儒. 冻融循环作用对黄土强度影响的试验研究[J]. 水利学报, 2014, 45(S2): 14-18.
HU Zaiqiang, LIU Yin, LI Hongru. Influence of freezingthawing cycles on strength of loess[J]. Journal of Hydraulic Engineering, 2014, 45(S2): 14-18.
[8]张玲玲, 龙建辉, 邢鲜丽, 等. 冻融循环作用下吕梁地区马兰黄土性质研究[J]. 太原理工大学学报, 2021, 52(4): 557-563.
ZHANG Lingling, LONG Jianhui, XING Xianli, et al. Study on the properties of Malan Loess in Lyuliang area under freezethaw cycles[J]. Journal of Taiyuan University of Technology, 2021, 52(4): 557-563.
[9]XU J, LI Y F, LAN W, et al. Shear strength and damage mechanism of saline intact loess after freezethaw cycling[J]. Cold Regions Science and Technology, 2019, 164: 102779.
[10]宋春霞, 齐吉琳, 刘奉银. 冻融作用对兰州黄土力学性质的影响[J]. 岩土力学, 2008, 29(4): 1077-1086.
SONG Chunxia, QI Jilin, LIU Fengyin. Influence of freezethaw on mechanical properties of Lanzhou loess[J]. Rock and Soil Mechanics, 2008, 29(4): 1077-1086.
[11]董晓宏, 张爱军, 连江波, 等. 反复冻融下黄土抗剪强度劣化的试验研究[J]. 冰川冻土, 2010, 32(4): 767-772.
DONG Xiaohong, ZHANG Aijun, LIAN Jiangbo, et al. Study of shear strength deterioration of loess under repeated freezing-thawing cycles[J]. Journal of Glaciology and Geocryology, 2010, 32(4): 767-772.
[12]李丽, 张坤, 张青龙, 等. 干湿和冻融循环作用下黄土强度劣化特性试验研究[J]. 冰川冻土, 2016, 38(4): 1142-1149.
LI Li, ZHANG Kun, ZHANG Qinglong, et al. Experimental study on the loess strength degradation characteristics under the action of drywet and freezethaw cycles[J]. Journal of Glaciology and Geocryology, 2016, 38(4): 1142-1149.
[13]周志军, 吕大伟, 宋伟, 等. 基于含水率和温度变化的冻融黄土性能试验[J]. 中国公路学报, 2013, 26(3): 44-49.
ZHOU Zhijun, LU Dawei, SONG Wei, et al. Experiment on loess characteristics after freeze-thaw circle based on changes of moisture content and temperature[J]. China Journal of Highway and Transport, 2013, 26(3): 44-49.
[14]倪万魁, 师华强. 冻融循环作用对黄土微结构和强度的影响[J]. 冰川冻土, 2014, 36(4): 922-927.
NI Wankui, SHI Huaqiang. Influence of freezingthawing cycles on microstructure and shear strength of loess[J]. Journal of Glaciology and Geocryology, 2014, 36(4): 922-927.
[15]许健, 王掌权, 任建威, 等. 重塑黄土冻融过程抗剪强度劣化特性试验研究[J]. 西安建筑科技大学学报: 自然科学版, 2017, 49(2): 200-206.
XU Jian, WANG Zhangquan, REN Jianwei, et al. Experimental research on shear strength deterioration of remolded loess under the freezethawing cycle[J]. J. Xi′an Univ. of Arch. & Tech.(Natural Science Edition), 2018, 49(2): 200-206.
[16]李宝平, 平高权, 张玉, 等. 平面应变条件下冻融循环对黄土力学性质的影响[J]. 土木与环境工程学报, 2021, 43(2): 41-48.
LI Baoping, PING Gaoquan, ZHANG Yu, et al. Effect of freezethaw cycles on mechanical properties of loess under plane strain[J]. Journal of Civil and Environmental Engineering, 2021, 43(2): 41-48.
[17]郑方, 邵生俊, 王松鹤. 复杂应力条件下冻融作用对黄土强度的影响[J]. 岩土工程学报, 2021, 43(S1): 224-228.
ZHENG Fang, SHAO Shengjun, WANG Songhe. Influences of freeze-thaw on strength of loess under complex stress path[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 224-228.
[18]郑颖人, 孔亮. 岩土弹塑性力学[M]. 中国建筑工业出版社, 2010.
ZHENG Yingren, KONG Liang. Geotechnical Plastic Mechanics[M]. China Architecture & Building Press, 2010.
[19]陈菲, 邵生俊, 邵帅. 基于应变能的黄土初始屈服和强度特性试验研究[J]. 岩石力学与工程学报, 2017, 36(S2): 4151-4157.
CHEN Fei, Shao Shengjun, Shao Shuai. Experimental study on primary yield and strength characteristics of loess based on strain energy[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S2): 4151-4157.
[20]JARDINE R J. Some observations on the kinematicnature of soil stiffness[J]. Soils and Foundations, 1992, 32(2): 111-124.
[21]ROTTA G V, CONSOLI N C, PRIETTO P D M, et al. Isotropic yielding in an artificially cemented soil cured under stress[J]. Geotechnique, 2003, 53(5): 493-501.
[22]PRASHANT A, PENUMADU D. Effect of intermediate principal stress on overconsolidated kaolin clay[J]. Journal of Geotecnical and Geoenvironmental Engineering, 2004, 130(3): 284-292.
[23]周小文, 刘攀, 胡黎明, 等. 结构性花岗岩残积土的剪切屈服特性试验研究[J]. 岩土力学, 2015, 36(S2): 157-163.
ZHOU Xiaowen, LIU Pan, HU Liming, et al. An experimental study of shear yield characteristics of structuredgranite residual soil[J]. Rock and Soil Mechanics, 2015, 36(S2): 157-163.
[24]张玉, 邵生俊, 何晖, 等. 原状黄土的平面应变剪切、屈服性状的试验研究[J]. 土木工程学报, 2017, 111-120.
ZHANG Yu, SHAO Shengjun, HE Hui, et al. Experimental study on planestrain shear and yield characteristics of intact loess[J]. China Civil Engineering Journal, 2017, 50(10): 111-120.
[25]王智. 平面应变条件下黄土剪切破坏与屈服特性研究[D]. 西安:西安工业大学. 2018.
WANG Zhi. Study on the shear failure and yield characteristics of loess under plane strain condition[D]. Xi′an: Xi′an Technology University, 2018.