[1]郑方,邵生俊,王松鹤,等.冻融循环对黄土剪切屈服与破坏行为的影响[J].西安建筑科技大学学报(自然科学版),2023,55(05):669-676.[doi:10.15986/j.1006-7930.2023.05.005]
 ZHENG Fang,SHAO Shengjun,WANG Songhe,et al.Effects of freeze-thaw cycles on shear yield and failure behavior of loessU[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(05):669-676.[doi:10.15986/j.1006-7930.2023.05.005]
点击复制

冻融循环对黄土剪切屈服与破坏行为的影响()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
55
期数:
2023年05期
页码:
669-676
栏目:
出版日期:
2023-10-28

文章信息/Info

Title:
Effects of freeze-thaw cycles on shear yield and failure behavior of loessU
文章编号:
1006-7930(2023)05-0669-08
作者:
郑方1邵生俊2王松鹤2刘乃飞1王永鑫3
(1.西安建筑科技大学 土木工程学院,陕西 西安 710055;2.西安理工大学 土木建筑工程学院,陕西 西安 710048;3.南昌工程学院 土木与建筑工程学院,江西 南昌 330099)
Author(s):
ZHENG Fang1 SHAO Shengjun2 WANG Songhe2 LIU Naifei1 WANG Yongxin3
(1.School of Civil Engineering, Xi′an Univ. of Arch. & Tech., Xi′an 710055, China; 2.School of Civil Engineering and Architecture, Xi′an University of Technology, Xi′an 710048, China; 3.School of Civil Engineering and Architecture, Nanchang Institute of Technology, Nanchang, 330099)
关键词:
冻融循环真三轴屈服应力破坏应力破坏准则
Keywords:
freeze-thaw cycles true triaxial yield stress failure stress failure criteria
分类号:
TU 444
DOI:
10.15986/j.1006-7930.2023.05.005
文献标志码:
A
摘要:
为研究冻融循环作用对黄土剪切屈服与破坏行为的影响,基于不同冻融循环作用下不同中主应力条件下的真三轴剪切试验结果,得到了广义剪应变与应力比的关系曲线,确定出屈服点及其相应的屈服应变和屈服应力,进一步对屈服应力和破坏应力进行了比较,并对不同冻融循环作用下的破坏准则的适用性进行了分析.结果表明:应力比η、屈服应力qy、破坏应力qf随着冻融循环次数的增加,都呈现出先减小后又增大后趋于稳定的变化规律,随着b值的增加都呈现出逐渐减小的变化规律;屈服应变εy大致分布在0.3%到1.6%之间,屈服应力均小于破坏应力;冻融循环作用对π平面上破坏轨迹的形状影响不大,而对其大小会有显著影响,且破坏应力点的破坏轨迹与Lade准则的预测结果较为一致.
Abstract:
In order to study the effect of freeze-thaw cycles on shear yield and failure behavior of loess, based on the true triaxial shear test results under different freezethaw cycles and different medium principal stress conditions, the relationship curve between generalized shear strain and stress ratio was obtained, and the yield point and its corresponding yield strain and yield stress were determined. Furthermore, the yield stress and failure stress were compared, and the applicability of failure criteria under different freeze-thaw cycles was analyzed. The results show that the stress ratio η, yield stress qy, and failure stress qf decrease first and then increase and then tend to be stable with the increase of freezethaw cycles, and decrease gradually with the increase of b value. The yield strain εy is roughly distributed between 0.3% and 1.6%, and the yield stress qy, is less than the failure stress qf. The freeze-thaw cycle has little effect on the shape of the failure trajectory on the π plane, but has a significant effect on its size, and the failure trajectory of the failure stress point is consistent with the prediction results of Lade′s criterion.

参考文献/References:

[1]LI G Y, MA W, MU Y H, et al. Effects of freezethaw cycle on engineering properties of loess used as road fills in seasonally frozen ground regions, North China[J]. Journal of Mountain Science, 2017, 14(2): 356-368.

[2]QI, J L, PIETER A V, CHENG G D. A review of the influence of freezethaw cycles on soil geotechnical properties[J]. Permafrost and Periglacial Processes, 2006, 17: 245-252.
[3]ZHOU Z, MA W, ZHANG S, et al. Damage evolution and recrystallization enhancement of frozen loess[J]. International Journal of Damage Mechanics, 2018, 27(8): 1131-1155.
[4]刘华, 胡鹏飞, 王梦南, 等. 冻融循环对酸污染黄土抗拉特性劣化试验研究[J]. 西安建筑科技大学学报:自然科学版, 2021, 53(4): 493-501.
  LIU Hua, Hu Pengfei, Wang Mengnan, et al. Experimental study on degradation of tensile properties of acidcontaminated loess by freezethaw cycles[J]. J. Xi′an Univ. of Arch. & Tech.(Natural Science Edition), 2021, 53(4): 493-501.
[5]ZHANG H, ZHANG Z, ZHANG K, et al. Effects of freezethaw on the waterheat process in a loess subgrade over a cutfill transition zone by laboratory investigation[J]. Cold Region Science and Technology, 2019, 164: 1027.
[6]许健, 郑翔, 张辉. 黄土地区边坡冻融剥落病害机理及稳定性分析[J]. 西安建筑科技大学学报:自然科学版, 2018, 50(4): 477-484.
  XU Jian, ZHENG Xiang, ZHANG Hui. Analysis on mechanism and stability of freeze-thaw spalling disease for slope in loess region[J]. J. Xi′an Univ. of Arch. & Tech.(Natural Science Edition), 2018, 50(4): 477-484.
[7]胡再强, 刘寅, 李宏儒. 冻融循环作用对黄土强度影响的试验研究[J]. 水利学报, 2014, 45(S2): 14-18.
  HU Zaiqiang, LIU Yin, LI Hongru. Influence of freezingthawing cycles on strength of loess[J]. Journal of Hydraulic Engineering, 2014, 45(S2): 14-18.
[8]张玲玲, 龙建辉, 邢鲜丽, 等. 冻融循环作用下吕梁地区马兰黄土性质研究[J]. 太原理工大学学报, 2021, 52(4): 557-563.
  ZHANG Lingling, LONG Jianhui, XING Xianli, et al. Study on the properties of Malan Loess in Lyuliang area under freezethaw cycles[J]. Journal of Taiyuan University of Technology, 2021, 52(4): 557-563.
[9]XU J, LI Y F, LAN W, et al. Shear strength and damage mechanism of saline intact loess after freezethaw cycling[J]. Cold Regions Science and Technology, 2019, 164: 102779.
[10]宋春霞, 齐吉琳, 刘奉银. 冻融作用对兰州黄土力学性质的影响[J]. 岩土力学, 2008, 29(4): 1077-1086.
  SONG Chunxia, QI Jilin, LIU Fengyin. Influence of freezethaw on mechanical properties of Lanzhou loess[J]. Rock and Soil Mechanics, 2008, 29(4): 1077-1086.
[11]董晓宏, 张爱军, 连江波, 等. 反复冻融下黄土抗剪强度劣化的试验研究[J]. 冰川冻土, 2010, 32(4): 767-772.
  DONG Xiaohong, ZHANG Aijun, LIAN Jiangbo, et al. Study of shear strength deterioration of loess under repeated freezing-thawing cycles[J]. Journal of Glaciology and Geocryology, 2010, 32(4): 767-772.
[12]李丽, 张坤, 张青龙, 等. 干湿和冻融循环作用下黄土强度劣化特性试验研究[J]. 冰川冻土, 2016, 38(4): 1142-1149.
  LI Li, ZHANG Kun, ZHANG Qinglong, et al. Experimental study on the loess strength degradation characteristics under the action of drywet and freezethaw cycles[J]. Journal of Glaciology and Geocryology, 2016, 38(4): 1142-1149.
[13]周志军, 吕大伟, 宋伟, 等. 基于含水率和温度变化的冻融黄土性能试验[J]. 中国公路学报, 2013, 26(3): 44-49.
  ZHOU Zhijun, LU Dawei, SONG Wei, et al. Experiment on loess characteristics after freeze-thaw circle based on changes of moisture content and temperature[J]. China Journal of Highway and Transport, 2013, 26(3): 44-49.
[14]倪万魁, 师华强. 冻融循环作用对黄土微结构和强度的影响[J]. 冰川冻土, 2014, 36(4): 922-927.
  NI Wankui, SHI Huaqiang. Influence of freezingthawing cycles on microstructure and shear strength of loess[J]. Journal of Glaciology and Geocryology, 2014, 36(4): 922-927.
[15]许健, 王掌权, 任建威, 等. 重塑黄土冻融过程抗剪强度劣化特性试验研究[J]. 西安建筑科技大学学报: 自然科学版, 2017, 49(2): 200-206.
  XU Jian, WANG Zhangquan, REN Jianwei, et al. Experimental research on shear strength deterioration of remolded loess under the freezethawing cycle[J]. J. Xi′an Univ. of Arch. & Tech.(Natural Science Edition), 2018, 49(2): 200-206.
[16]李宝平, 平高权, 张玉, 等. 平面应变条件下冻融循环对黄土力学性质的影响[J]. 土木与环境工程学报, 2021, 43(2): 41-48.
  LI Baoping, PING Gaoquan, ZHANG Yu, et al. Effect of freezethaw cycles on mechanical properties of loess under plane strain[J]. Journal of Civil and Environmental Engineering, 2021, 43(2): 41-48.
[17]郑方, 邵生俊, 王松鹤. 复杂应力条件下冻融作用对黄土强度的影响[J]. 岩土工程学报, 2021, 43(S1): 224-228.
  ZHENG Fang, SHAO Shengjun, WANG Songhe. Influences of freeze-thaw on strength of loess under complex stress path[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 224-228.
[18]郑颖人, 孔亮. 岩土弹塑性力学[M]. 中国建筑工业出版社, 2010.
  ZHENG Yingren, KONG Liang. Geotechnical Plastic Mechanics[M]. China Architecture & Building Press, 2010.
[19]陈菲, 邵生俊, 邵帅. 基于应变能的黄土初始屈服和强度特性试验研究[J]. 岩石力学与工程学报, 2017, 36(S2): 4151-4157.
  CHEN Fei, Shao Shengjun, Shao Shuai. Experimental study on primary yield and strength characteristics of loess based on strain energy[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S2): 4151-4157.
[20]JARDINE R J. Some observations on the kinematicnature of soil stiffness[J]. Soils and Foundations, 1992, 32(2): 111-124.
[21]ROTTA G V, CONSOLI N C, PRIETTO P D M, et al. Isotropic yielding in an artificially cemented soil cured under stress[J]. Geotechnique, 2003, 53(5): 493-501.
[22]PRASHANT A, PENUMADU D. Effect of intermediate principal stress on overconsolidated kaolin clay[J]. Journal of Geotecnical and Geoenvironmental Engineering, 2004, 130(3): 284-292.
[23]周小文, 刘攀, 胡黎明, 等. 结构性花岗岩残积土的剪切屈服特性试验研究[J]. 岩土力学, 2015, 36(S2): 157-163.
  ZHOU Xiaowen, LIU Pan, HU Liming, et al. An experimental study of shear yield characteristics of structuredgranite residual soil[J]. Rock and Soil Mechanics, 2015, 36(S2): 157-163.
[24]张玉, 邵生俊, 何晖, 等. 原状黄土的平面应变剪切、屈服性状的试验研究[J]. 土木工程学报, 2017, 111-120.
  ZHANG Yu, SHAO Shengjun, HE Hui, et al. Experimental study on planestrain shear and yield characteristics of intact loess[J]. China Civil Engineering Journal, 2017, 50(10): 111-120.
[25]王智. 平面应变条件下黄土剪切破坏与屈服特性研究[D]. 西安:西安工业大学. 2018.
  WANG Zhi. Study on the shear failure and yield characteristics of loess under plane strain condition[D]. Xi′an: Xi′an Technology University, 2018.

相似文献/References:

[1]朱方之1,马志鸣2,蒋连接1,等.持载和冻融循环对钢筋混凝土粘结性能的影响[J].西安建筑科技大学学报(自然科学版),2016,48(05):643.[doi:10.15986/j.1006-7930.2016.05.005]
 ZHU Fangzhi,MA Zhiming,JIANG Lianjie,et al.Study of influence of sustained load and freeze-thaw cycling on the bond behavior of steel reinforced concrete[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2016,48(05):643.[doi:10.15986/j.1006-7930.2016.05.005]
[2]任战鹏,牛荻涛,吴敬涛,等.极端温度冻融循环对混凝土耐久性的影响[J].西安建筑科技大学学报(自然科学版),2018,50(02):220.[doi:10.15986/j.1006-7930.2018.02.011]
 REN Zhanpeng,NIU Ditao,WU Jingtao,et al.Effect of freezing-thawing cycle on the durability of concrete under Extreme Environment Conditions[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2018,50(05):220.[doi:10.15986/j.1006-7930.2018.02.011]
[3]时伟,张亮,杨忠年,等.冻融循环条件下膨胀土力学特性试验研究[J].西安建筑科技大学学报(自然科学版),2019,51(04):480.[doi:10.15986/j.1006-7930.2019.04.003]
 SHI Wei,ZHANG Liang,YANG Zhongnian,et al.Experimental study on mechanical properties of expansive soilof artificial preparation under freeze-thaw cycle conditions[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(05):480.[doi:10.15986/j.1006-7930.2019.04.003]
[4]郭书源,赵 敏,武 昕.冻融循环下硅质聚苯板体系保温性能研究[J].西安建筑科技大学学报(自然科学版),2020,52(02):273.[doi:10.15986/j.1006-7930.2020.02.017]
 GUO Shuyuan,ZHAO Min,WU Xin.Study on heat-insulated property of silicon polystyrene board under freeze-thaw cycles[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(05):273.[doi:10.15986/j.1006-7930.2020.02.017]
[5]郭从洁,时 伟,杨忠年,等.冻融作用下初始含水率对膨胀土边坡稳定性的影响研究[J].西安建筑科技大学学报(自然科学版),2021,53(01):69.[doi:10.15986/j.1006-7930.2021.01.010]
 GUO Congjie,SHI Wei,YANG Zhongnian,et al.Research on the influence of initial moisture contents on the stability of the expansive soil slope under freezethaw cycles[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(05):69.[doi:10.15986/j.1006-7930.2021.01.010]
[6]崔郁雪,杨忠年,时 伟,等.冻融循环下非饱和膨胀土一维土柱模型试验研究[J].西安建筑科技大学学报(自然科学版),2021,53(03):393.[doi:10.15986/j.1006-7930.2021.03.011]
 CUI Yuxue,YANG Zhongnian,SHI Wei,et al.Experimental study on one dimensional soil column model of unsaturated expansive soil under freeze-thaw cycles[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(05):393.[doi:10.15986/j.1006-7930.2021.03.011]
[7]陆春华,冯晨阳,平 安,等.对基于动弹性模量的海工混凝土抗冻损伤评价[J].西安建筑科技大学学报(自然科学版),2023,55(04):563.[doi:10.15986/j.1006-7930.2023.04.011 ]
 LU Chunhua,FENG Chenyang,PING An,et al.Damage evaluation of frost resistance of marine concrete based on dynamic elastic modulus[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(05):563.[doi:10.15986/j.1006-7930.2023.04.011 ]
[8]刘海翔,柴明霞,马艳霞,等.冻融循环条件下细粒硫酸盐渍土盐冻胀力学特性试验研究[J].西安建筑科技大学学报(自然科学版),2024,56(01):23.[doi:10.15986/j.1006-7930.2024.01.004]
 LIU Haixiang,CHAI Mingxia,MA Yanxia,et al. Experimental study on salt frost heaving mechanical properties of fine-grained sulfate saline soil under freeze-thaw cycle conditions [J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(05):23.[doi:10.15986/j.1006-7930.2024.01.004]
[9]刘华,张雨轩,王松鹤,等.垃圾渗滤液侵入黄土的冻结温度演变特征试验研究[J].西安建筑科技大学学报(自然科学版),2024,56(02):192.[doi:10.15986/j.1006-7930.2024.02.005]
 LIU Hua,ZHANG Yuxuan,WANG Songhe,et al.Experimental study on freezing temperature evolution characteristics of loess contaminated by landfill leachate[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(05):192.[doi:10.15986/j.1006-7930.2024.02.005]

备注/Memo

备注/Memo:
收稿日期:2022-06-15修回日期:2023-08-30
基金项目:国家自然科学基金项目(52208368)
第一作者:郑方(1989—),女,博士,讲师,主要研究黄土力学与非饱和土力学. E-mail: zhengfang@xauat.edu.cn
更新日期/Last Update: 2023-11-02