[1]杨庆山. 古建筑木结构的承载及抗震机理[J]. 土木与环境工程学报(中英文), 2022, 44(2): 19.
YANG Qingshan. Loadbearing and aseismic mechanism of traditional wooden structures [J]. Journal of Civil and Environmental Engineering, 2022, 44(2): 19.
[2]谢启芳, 王龙. 传统木结构抗震性能与分析[M]. 北京: 科学出版社, 2021.
XIE Qifang, WANG Long. Seismic performance and analysis of traditional timber structures [M]. Beijing: China Science Publishing& Media Ltd., 2021.
[3]潘毅, 安仁兵, 游文龙. 古建筑木结构榫卯节点力学性能研究进展[J]. 建筑结构学报, 2024, 45(7): 226241.
PAN Yi, AN Renbing, YOU Wenlong. A review on mechanical performance of mortisetenon joints in traditional timber structures [J]. Journal of Building Structures, 2024, 45(7): 226241.
[4]薛建阳, 许丹, 代武强. 穿斗式木结构通榫节点抗震性能研究及数值模拟分析[J]. 土木工程学报, 2019, 52(11): 5665.
XUE Jianyang, XU Dan, DAI Wuqiang. Experimental study and numerical simulation analysis on seismic performance of continuous tenon joint in columnandtie timber structure [J]. China Civil Engineering Journal, 2019, 52(11): 5665.
[5]陈庆军, 彭章锋, 蔡健, 等. 广府古建筑木结构箍头榫节点抗震性能研究[J]. 建筑结构学报, 2019, 40(10): 168179.
CHEN Qingjun, PENG Zhangfeng, CAI Jian, et al. Seismic behavior of hoop head tenonmortise joint in ancient wood structures in Guangfu [J]. Journal of Building Structures, 2019, 40(10): 168179.
[6]YU P, YANG Q, LAW S, et al. Probabilistic study of lateral behaviors of columnandtie wooden frame with connection gaps [J]. Journal of Building Engineering, 2022, 61: 105276.
[7]薛建阳, 路鹏, 夏海伦. 古建筑木结构透榫节点受力性能的影响因素分析[J]. 西安建筑科技大学学报(自然科学版), 2018, 50(3): 324330.
XUE Jianyang, LU Peng, XIA Hailun. Influencing factors analysis on mechanical behavior of throughtenon joints in ancient timber buildings [J]. J. Xi′an Univ. of Arch. & Tech. (Natural Science Edition), 2018, 50(3): 324330.
[8]薛建阳, 任国旗, 许丹, 等.传统民居穿斗式木结构栓榫节点抗震性能试验研究[J].建筑结构学报, 2019, 40(10): 158167.
XUE Jianyang, REN Guoqi, XU Dan, et al. Experimental study on seismic performance of dowel joints in traditional ChuanDou style timber structures [J]. Journal of Building Structures, 2019, 40(10): 158167.
[9]王展光, 石昂, 邵建华, 等. 明销透榫节点抗弯性能研究[J].建筑结构, 2021, 51(18): 118124.
WANG Zhanguang, SHI Ang, SHAO Jianhua, et al. Research on flexural behavior of tenon joint with penetrating pin [J]. Building Structure, 2021, 51(18): 118124.
[10]杨娜, 郭婷, 崔玥, 等. 传统民居穿销直榫中节点弯矩转角关系理论分析 [J/OL]. 工程力学,2023: 19. 20230718. [20240801]. https://kns.cnki.net/kcms2/detail/11.2595.O3.20230718.1022.002.html.
YANG Na, GUO Ting, CUI Yue, et al. Theoretical analysis on momentrotation relationship of interior straight mortisetenon joint with wooden peg of traditional dwellings [J/OL]. Engineering Mechanics, 2023: 19. 20230718. [20240801]. https://kns.cnki.net/kcms2/detail/11.2595.O3.20230718.1022.002.html.
[11]马炜, 杨俊杰, 沈黎, 等. 销连接榫卯节点木构件抗侧力性能研究[J]. 工业建筑, 2016, 46: 156159.
MA Wei, YANG Junjie, SHEN Li, et al. Experimental study on mortise and tenon joint characteristic connected by pin of timber structure [J]. Industrial Construction, 2016, 46: 156159.
[12]周志鹏, 陈波, 黄勇, 等. 传统木结构穿销式榫卯节点抗震性能分析[J]. 林产工业, 2023, 60(8): 1724.
ZHOU Zhipeng, CHEN Bo, HUANG Yong, et al. Seismic performance analysis of traditional wooden structure tenonmortise joint with penetrating pin[J]. China Forest Products Industry, 2023, 60(8): 1724.
[13]陈春超, 邱洪兴, 包轶楠, 等. 不对称榫卯节点正反向受弯性能试验研究[J]. 东南大学学报(自然科学版), 2014, 44(6): 12241229.
CHEN Chunchao, QIU Hongxing, BAO Tienan, et al. Experimental study on positive and reverse flexural behavior of asymmetric mortisetenon joints [J]. Journal of Southeast University (Natural Science Edition), 2014, 44(6): 12241229.
[14]兰英静, 董金爽. 残损古建筑木结构不对称榫卯节点恢复力特性[J]. 中国科技论文, 2023, 18(10): 10561062.
LAN Yingjing, DONG Jinshuang. Restoring force behavior of asymmetric damaged mortisetenon joints of ancient wooden buildings [J]. China Science Paper, 2023, 18(10): 10561062.
[15]LI Z, ISODA H, KITAMORI A, et al. Analytical model for the capacities of traditional Japanese timber frames with deep beams [J]. Engineering Structures, 2022, 253: 113764.
[16]KITAMORI A, INAYAMA M, GOTOU M, et al. Bending performance of traditional shear keyed column to beam joints [J]. Journal of Structural and Construction Engineering (Transactions of AIJ), 2018, 748: 859867.
[17]王明谦, 宋晓滨, 罗烈. 木销半榫节点转动性能试验研究与有限元分析[J]. 建筑结构学报, 2021, 42(3): 193201.
WANG Mingqian, SONG Xiaobin, LUO Lie. Experimental study and finite element analysis of rotational behavior of wood pegged semi mortise and tenon connections [J]. Journal of Building Structures, 2021, 42(3): 193201.
[18]MATSUMOTO T, TAKIYAMA N, HAYASHI Y. Experimental study on structural properties of columntobeam joint [J]. Journal of Structural and Construction Engineering (Transactions of AIJ), 2012, 77(675): 747754.
[19]YOKOTA H, TAKIYAMA N, HAYASHI Y. Experimental study on the traditional timber columntobeam joint to evaluate of structural properties [J]. AIJ Journal of Technology and Design, 2015, 21(48): 579584.
[20]AOKI K, LI T, KYUTA A, et al. Research on joint reinforcement of traditional wooden frame [J]. AIJ Journal of Technology and Design, 2021, 27(67): 12491254.
[21]AOKI K, SUGINO M, HAYASHI Y. Study on improving accuracy of pullout yield strength evaluation of mortisetenon (Komisen) joints in traditional wooden buildings[J]. Journal of Structural and Construction Engineering (Transactions of AIJ), 2023, 88(807): 814825.
[22]孟阳. 中国南方民间传统木构建筑榫卯机制[D]. 南京:东南大学, 2022.
MENG Yang. The mortisetenon mechanism of traditional folk wooden structure in southern China [D]. Nanjing: Southeast University, 2022.
[23]UEDA T, FUMOTO K. A study on historical transition of sashimono joint in the framework of early modern houses in western Japan [J]. Journal of Architecture and Planning (Transactions of AIJ), 2016, 81(721):741749.
[24]Japan Housing and Wood Technology Center (JHWTC). Design of allowable stress of wooden frame construction housing [M]. Tokyo: Japan Housing and Wood Technology Center, 2008.
[25]中华人民共和国住房和城乡建设部. 建筑抗震试验规程:JGJ/T 101—2015[S] 北京: 中国建筑工业出版社, 2015.
Ministry of Housing and UrbanRural Development of the People′s Republic of China. Specification for seismic test of buildings: JGJ/T 101—2015[S]. Beijing: China Architecture & Building Press, 2015.
[26]Architectural Institute of Japan. Design manual for engineered timber joints [M]. Tokyo: Maruzen Publishing Co., Ltd., 2009.
[27]INAYAMA M. Wood embedment theory and its applicationstudy on seismic design method of high resilience expected timber frame joints [D]. Tokyo: The University of Tokyo, 1992.
[28]KITAMORI A, MORI T, KATAOKA Y, et al. Effect of additional length on partial compression perpendicular to the grain of wood [J]. Journal of Structural and Construction Engineering (Transactions of AIJ), 2009, 74(642): 14771485.