[1]刘 华,胡文乐,何朋立,等.玄武岩纤维灰土力学特性及扩宽路堤边坡稳定性分析[J].西安建筑科技大学学报(自然科学版),2021,53(01):53-60.[doi:10.15986/j.1006-7930.2021.01.008]
 LIU Hua,HU Wenle,HE Pengli,et al.Mechanical properties of basalt fiber ash soil and stability analysis of widened embankment slope[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(01):53-60.[doi:10.15986/j.1006-7930.2021.01.008]
点击复制

玄武岩纤维灰土力学特性及扩宽路堤边坡稳定性分析()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
53
期数:
2021年01期
页码:
53-60
栏目:
出版日期:
2021-02-28

文章信息/Info

Title:
Mechanical properties of basalt fiber ash soil and stability analysis of widened embankment slope
文章编号:
1006-7930(2021)01-0053-08
作者:
刘 华12胡文乐12何朋立3
(1.西安建筑科技大学 土木工程学院,陕西 西安 710055;2.陕西省岩土与地下空间工程重点实验室,陕西 西安 710055;3.洛阳理工学院 土木工程学院,河南 洛阳 471023;4.东北大学 资源与土木工程学院,辽宁 沈阳 110819;5.南京泰克奥科技有限公司,江苏 南京 210000)
Author(s):
LIU Hua 12 HU Wenle12 HE Pengli 3 et al
(1.School of Civil Engineering,Xi’an Univ. of Arch. & Tech.,Xi’an 710055, China; 2.Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering, Xi’an 710055, China; 3. School of Civil Engineering, Luoyang Institute of Technology Henan, Luoyang 471023, China; 4.School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; 5.Nanjing Taikeao Technology Co., Ltd., Nanjing 210000, China)
关键词:
玄武岩纤维 黄土改良 力学特性 路堤稳定性
Keywords:
basalt fiber loess improvement mechanical properties embankment stability
分类号:
TU411.7
DOI:
10.15986/j.1006-7930.2021.01.008
文献标志码:
A
摘要:
为了探明玄武岩纤维与石灰改良黄土的力学特性及作为扩宽路堤填料时的稳定状态,通过正交设计,进行固结不排水三轴(CU)试验,得到含水率、压实度、纤维掺量、纤维长度等4因素下的最优水平组合,在此基础上,通过控制纤维长度、含水率和压实度不变,将4种不同掺量(0.2%、0.4%、0.6%、0.8%)的6 mm长度玄武岩纤维和石灰复合掺入黄土中,对纤维掺量、纤维长度及龄期对加筋效果的影响进行分析; 其次,根据室内试验数据,基于有限元基本原理对纤维灰土扩宽路堤的稳定性进行数值模拟.结果表明:纤维加筋灰土能够显著提高黄土的抗剪强度指标,且黏聚力随纤维掺量增加先增大后减小,0.6%时为最优; 7 d龄期纤维灰土黏聚力较3 d龄期有明显提高; 安全系数与填土材料关系特征明显,安全系数随纤维掺量先增加后减小; 安全系数随扩宽路堤的扩宽宽度和坡度系数增加均呈近似线性增长,随路堤高度增加呈近似线性减小特征.
Abstract:
In order to explore the mechanical properties of basalt fiber and lime improved loess and its stable state as embankment filler, the consolidated undrained triaxial(CU)test was carried out through orthogonal design, and the optimal horizontal combination of four factors, such as moisture content, compactness, fiber content and fiber length, was obtained. On this basis, by controlling the fiber length, moisture content and compactness unchanged, the optimal horizontal combination of four factors was obtained. Six kinds of 6 mm basalt fiber and lime with different content(0.2%, 0.4%, 0.6%, 0.8%)are mixed into loess, and the influence of fiber content, fiber length and age on reinforcement effect is analyzed. Secondly, according to the indoor test data, based on the basic principle of finite element, the stability of fiber reinforced lime soil widening embankment is numerically simulated. The results show that: fiber reinforced lime soil can significantly improve the shear strength index of loess, and the cohesion first increases and then decreases with the increase of fiber content, and 0.6% is the best.Results show that the cohesion of fiber lime soil at 7 d age is significantly higher than that at 3 d age.The relationship also between safety factor and filling material is obvious, and the safety factor increases first and then decreases also with the increase of fiber content.The safety factor increases linearly with the increase of widening width and slope coefficient, and decreases linearly with the increase of embankment height.

参考文献/References:

[1]徐张建, 林在贯, 张茂省. 中国黄土与黄土滑坡[J].岩石力学与工程学报, 2007, 26(7):1297-1312.
XU Zhangjian, LIN Shouguan, ZHANG Maosheng. Chinese Loess and Loess Landslide[J].Chinese Journal of Rock Mechanics and Engineering, 2007, 26(7): 1297-1312.
[2]唐朝生, 刘义怀, 施斌,等. 新老路基拼接中差异沉降的数值模拟[J].中国公路学报, 2007, 20(2):13-17.
TANG Chaosheng, LIU Yihuai, SHI Bin, et al. Numerical simulation of differential settlement in new and old roadbed splicing[J].China Journal of Highway and Transport, 2007, 20(2): 13-17.
[3]龚晓南. 地基处理技术及其发展[J].土木工程学报, 1997(6):3-11.
GONG Xiaonan. Ground treatment technology and its development[J].China Civil Engineering Journal, 1997(6): 3-11.
[4]周健, 张健, 姚浩. 真空降水联合强夯法在软弱路基处理中的应用研究[J].岩土力学, 2005(s1):202-204.
ZHOU Jian, ZHANG Jian, YAO Hao. Application of vacuum precipitation combined with dynamic compaction method in soft subgrade treatment[J].Rock and Soil Mechanics, 2005(s1): 202-204.
[5]苏超,徐泽中. 高速公路拼接段地基处理设计分析方法与工程实践[J].工程地质学报, 2000, 8(1):81-85.
SU Chao, XU Zezhong. Analysis method and engineering practice of foundation treatment design for expressway splicing section[J].Journal of Engineering Geology, 2000, 8(1):81-85.
[6]杨广庆, 管振祥. 高速铁路路基改良填料的试验研究[J].岩土工程学报, 2001,23(6):682-685.
YANG Guangqing, GUAN Zhenxiang. Experimental study on improved filling of high-speed railway subgrade[J].Chinese Journal of Geotechnical Engineering, 2001,23(6): 682-685.
[7]杨广庆. 水泥改良土的动力特性试验研究[J].岩石力学与工程学报, 2003, 22(7):1156-1156.
YANG Guangqing. Experimental study on dynamic characteristics of cement improved soil[J].Chinese Journal of Rock Mechanics and Engineering, 2003, 22(7): 1156-1156.
[8]贺建清, 张家生. 石灰土填料动力特性试验研究[J].湖南科技大学学报(自然科学版), 2005, 20(4):58-63.
HE Jianqing, ZHANG Jiasheng. Experimental study on dynamic characteristics of lime soil filling[J].Journal of Hunan University of Science and Technology(Natural Science), 2005, 20(4): 58-63.
[9]胡斌, 王新刚, 连宝琴. 纤维类材料改善膨胀土工程性能的适用性探讨[J].岩土工程学报, 2010,32(S2):615-618.
HU Bin, WANG Xingang, LIAN Baoqin. Discussion on the applicability of fiber materials for improving engineering properties of expansive soils[J].Chinese Journal of Geotechnical Engineering, 2010,32(S2): 615-618.
[10]高磊, 胡国辉, 杨晨,等. 玄武岩纤维加筋黏土的剪切强度特性[J].岩土工程学报, 2016, 38(S1):231-237.
GAO Lei, HU Guohui, YANG Chen, et al. Shear strength characteristics of basalt fiber reinforced clay[J].Chinese Journal of Geotechnical Engineering, 2016, 38(S1):231-237.
[11]马闫, 谢婉丽, 彭淑君, 等. 加筋方式对黄土动力特性影响三轴试验研究[J].水文地质工程地质, 2017,44(4): 50-56.
MA Yan, XIE Yuli, PENG Shujun, et al. Influence of the reinforce scheme on dynamic properties of the reinforced loess with dynamic triaxial test[J].Hydrogeology and Engineering Geology, 2017,44(4): 50-56.
[12]杨晴雯, 裴向军, 吴梦秋, 等. 不同加固技术在散粒体斜坡表层的应用对比研究[J].水文地质工程地质, 2019, 46(1): 143-151.
YANG Qingwen, YAN Xiangjun, WU Mengqiu, et al. Comparative study on the application of different reinforcement techniques in the surface of granular slopes[J].Hydrogeology and Engineering Geology, 2019, 46(1): 143-151.
[13]关文章.湿陷性黄土工程性能新篇[M].西安:西安交通大学出版社, 1992.
GUAN Wenzhang. A new chapter on the engineering performance of collapsible loess[M].Xi’an: Xi’an Jiaotong University Press, 1992.
[14]胡文乐, 何朋立, 刘华. 玄武岩纤维黄土抗剪强度变化规律与最优配合比分析[J].中国地质灾害与防治学报, 2019, 30(4): 96-101.
HU Wenle, HE Pengli, LIU Hua. Experimental study on optimization of shear strength parameters of basalt fiber loess[J].The Chinese Journal of Geological Hazard and Control, 2019, 30(4): 96-101.
[15]胡文乐, 何朋立, 刘华,等. 玄武岩纤维加筋黄土力学参数优化试验研究[J].人民长江, 2020, 51(5): 222-227.
HU Wenle, HE Pengli, LIU Hua, et al. Experimental study on optimization of mechanical parameters of reinforced loess with basalt fiber[J].Yangtze River, 2020, 51(5): 222-227.
[16]胡文乐, 何朋立, 刘华,等. 玄武岩纤维灰土抗剪强度参数优化试验研究[J].应用力学学报, 2020, 37(6): 2348-2353.
HU Wenle, HE Pengli, LIU Hua, et al. Experimental study on optimization of shear strength parameters of basalt fiber lime soil[J].Chinese Journal of Applied Mechanics, 2020, 37(6): 2348-2353.
[17]李广信, 陈轮. 纤维加筋粘性土的试验研究[J].水利学报, 1995(6):31-36.
LI Guangxin, CHEN Lun. Experimental study on fiber reinforced cohesive soil[J].Journal of Hydraulic Engineering, 1995(6): 31-36.
[18]董玉文,张伯平. 养护龄期对灰土工程性能的影响试验研究[J].重庆建筑大学学报, 2002(3):38-42.
DONG Yuwen, ZHANG Boping. Experimental study on the influence of maintenance age on the performance of lime soil engineering[J].Journal of Chongqing Jianzhu University, 2002(3): 38-42.
[19]陈力华,靳晓光. 有限元强度折减法中边坡三种失效判据的适用性研究[J].土木工程学报, 2012(9):136-146.
CHEN Lihua, YAN Xiaoguang. Applicability of three failure criterions for slope in finite element strength reduction method[J].China Civil Engineering Journal, 2012(9): 136-146.
[20]裴利剑, 屈本宁, 钱闪光. 有限元强度折减法边坡失稳判据的统一性[J].岩土力学, 2010, 31(10):3337-3341.
PEI Lijian, QU Benning, QIAN Shanguang. Uniformity of slope instability criterion with finite element strength reduction method[J].Rock and Soil Mechanics, 2010, 31(10): 3337-3341.

相似文献/References:

[1]黄镜渟,高 鹏,马翠玲,等.BFRP布加固钢筋混凝土圆柱的抗震性能研究[J].西安建筑科技大学学报(自然科学版),2022,54(02):291.[doi:10.15986/j.1006-7930.2022.02.017]
 HUANG Jingting,GAO Peng,MA Cuilin,et al.Research on seismic performance of BFRP-confined reinforced circular concrete columns[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2022,54(01):291.[doi:10.15986/j.1006-7930.2022.02.017]

备注/Memo

备注/Memo:
收稿日期:2019-06-12 修改稿日期:2021-01-08
基金项目:国家自然科学基金资助项目(51608436); 陕西省自然科学基础研究计划基金资助项目(2018JQ5003); 陕西省教育厅专项科研基金资助项目(18JK0478); 河南省自然科学科技基金资助项目(162102210277); 河南省高等学校重点科研基金资助项目(18A560016)
第一作者:刘华(1983-),男,博士,副教授,硕士生导师.主要从事环境岩土工程研究.E-mail:liuhua029@xauat.edu.cn
通讯作者:何朋立(1976-),男,博士,副教授.主要从事岩土工程方面的教学和科研工作.E-mail:hpl7609@126.com
更新日期/Last Update: 2021-02-28