[1]白叶飞,赵淋涛,康晓龙,等.蒙中地区充气膜结构和传统结构体育馆热环境对比[J].西安建筑科技大学学报(自然科学版),2022,(01):18-26.[doi:10.15986/j.1006-7930.2022.01.003 ]
 BAI Yefei,ZHAO Lintao,KANG Xiaolong,et al.Comparison of thermal environment between gymnasium with membrane structure and traditional gymnasium in central Inner Mongolia[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2022,(01):18-26.[doi:10.15986/j.1006-7930.2022.01.003 ]
点击复制

蒙中地区充气膜结构和传统结构体育馆热环境对比()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
期数:
2022年01期
页码:
18-26
栏目:
出版日期:
2022-02-28

文章信息/Info

Title:
Comparison of thermal environment between gymnasium with membrane structure and traditional gymnasium in central Inner Mongolia
文章编号:
1006-7930(2022)01-0018-09
作者:
白叶飞1赵淋涛1康晓龙1唐汝宁1姜丝拉夫2
(1.内蒙古工业大学 土木工程学院,内蒙古 呼和浩特 010051; 2.内蒙古恒瑞能源综合管理有限公司,内蒙古 呼和浩特 010051)
Author(s):
BAI Yefei1 ZHAO Lintao1 KANG Xiaolong1 TANG Ru'ning1 JIANG Silafu2
(1.School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, China; 2.Inner Mongolia Hengrui Energy Integrated Management Co. Ltd, Hohhot 010051, China)
关键词:
蒙中地区 严寒地区 充气膜结构 体育馆 热环境
Keywords:
the central Inner Mongolia area severe cold area membrane structure gymnasium thermal environment
分类号:
TU111.1
DOI:
10.15986/j.1006-7930.2022.01.003
文献标志码:
A
摘要:
充气膜结构体育馆和传统结构体育馆主材热工性能不同,造成两种结构体育馆的室内热环境响应明显不同.本文对蒙中地区充气膜结构和传统结构体育馆进行实地调研,对两者的室内外空气温度、空气流速、壁面温度、太阳辐射照度等参数进行测量,并选取5项评价指标(温度波动、温度均匀度、垂直空气温差、吹风感指数及PMV)对比分析两种结构体育馆室内热环境的差异性.研究结果表明:充气膜结构体育馆室内外空气温度的延迟时间较短,约为55 min,而传统结构体育馆延迟时间约为100 min; 充气膜结构体育馆站姿人群垂直温差可达2.26 ℃,传统结构体育馆最大为0.55 ℃,充气膜结构体育馆坐姿人群aPMV为-1.40,而传统结构体育馆为-0.92,造成充气膜结构体育馆的热环境舒适性较差,并且太阳辐射照度越强,两者差异性越大.为了提高体育馆热舒适性,充气膜结构体育馆的建议操作温度范围为9.48~13.11 ℃,传统结构体育馆的范围为8.19~11.81 ℃.
Abstract:
The thermal performance of the main materials of gymnasium with inflatable membrane structure is different from that of gymnasium with traditional structure, resulting in significantly different indoor thermal environmental responses of the two kinds of gymnasiums. In this study, a field research was carried out on the two kinds of gymnasiums in central Mongolia, and the indoor and outdoor air temperature, air velocity, wall temperature, solar radiation illuminance and other parameters were measured, and then, five evaluation indexes(temperature fluctuation, temperature uniformity, vertical air temperature difference, blowing sensation index and PMV)were selected to compare and analyze the difference of indoor thermal environment of two kinds of gymnasiums. The research results show that the delay time of indoor and outdoor air temperature in the gymnasium with inflatable membrane structure is relatively short, about 55 minutes, while the delay time of the gymnasium with traditional structure is about 100 minutes; the vertical temperature difference of the standing crowd in the gymnasium with inflatable membrane structure can reach 2.26 ℃, while the maximum temperature difference of the gymnasium with traditional structure is only 0.55 ℃, and the aPMV of people sitting in the gymnasium with inflatable membrane structure is -1.40, while that in the gymnasium with traditional structure is -0.92, resulting in poor thermal environment comfort in gymnasium with inflatable membrane structure, and the stronger the solar radiation illuminance, the greater the difference between the two. In order to improve the thermal comfort of the gymnasium, the recommended operating temperature range of the gymnasium with inflatable membrane structure is 9.48~13.11 ℃, and the range of the gymnasium with traditional structure is 8.19~11.81 ℃.

参考文献/References:

[1] 高新京, 吴明超. 膜结构工程技术与应用[M]. 北京: 机械工业出版社, 2010, 3-19.
GAO Xinjing, WU Mingchao. Membrane structure engineering technology and its application[M]. Beijing: Mechanical Industry Press, 2010, 3-19.
[2]张其林.膜结构在我国的应用回顾和未来发展[J].建筑结构,2019,49(19):55-64.
ZHANG Qilin. Review and future development of the application of membrane structure in my country[J]. Building Structure, 2019, 49(19): 55-64.
[3]HU J, CHEN W, ZHAO B, et al. Buildings with ETFE foils: A review on material properties, architectural performance and structural behavior[J]. Construction and Building Materials, 2017, 131: 411-422.
[4]HU J, CHEN W, CAI Q, et al. Structural behavior of the PV-ETFE cushion roof[J]. Thin-Walled Structures, 2016, 101(Apr.):169-180.
[5]薛素铎, 李亚明, 周观根, 等. 充气膜结构设计与施工技术指南[M]. 北京: 中国建筑工业出版社, 2019, 1-13.
XUE Suduo, LI Yaming, ZHOU Guangen et al. Technical guide for the design and construction of inflatable membrane structures[M]. Beijing: China Building Industry Press, 2019, 1-13.
[6]LI X, WANG D. Study on application of membrane structure in the sports building[J]. Applied Mechanics and Materials, 2014, 3489: 295-299.
[7]HUA Suo, ADRIANA Angelotti, Alessandra Zanelli. Thermal-physical behavior and energy performance of air-supported membranes for sports halls: A comparison among traditional and advanced building envelopes[J]. Energy & Buildings, 2015, 109: 35-46.
[8]MILOEVI V S, MARKOVI B L. Comparison of point and snow load deflections in design and analysis of tensile membrane structures[J]. Advances in Civil Engineering, 2020, 2020(1): 1-11.
[9]KUMAR A, SUMAN B M. Experimental evaluation of insulation materials for walls and roofs and their impact on indoor thermal comfort under composite climate[J]. Building and Environment, 2013, 59(1): 635-643.
[10]董洪庆. 西安建筑科技大学体育馆室内热环境分析[J]. 山西建筑, 2011, 37(7): 189-190.
DONG Hongqing. Analysis of Indoor Thermal Environment of Xi'an University of Architecture and Technology Gymnasium[J]. Shanxi Architecture, 2011, 37(7): 189-190.
[11]HUANG X, MA X, ZHANG Q. Effect of building interface form on thermal comfort in gymnasiums in hot and humid climates[J]. Frontiers of Architectural Research, 2019, 8(1): 32-43.
[12]吴万昕. 基于运动人群热可接受度的广州地区体育训练馆界面形式对比研究[D].广州:华南理工大学,2019.
WU Wanxin. A Comparative Study on the Interface Forms of Sports Training Halls in Guangzhou Based on the Thermal Acceptability of Sports Crowd[D]. Guangzhou: South China University of Technology, 2019.
[13]马勇, 邵晓亮, 周学政, 等. 空调机组对体育馆室内局部热环境控制的研究[J]. 西安体育学院学报, 2017, 34(5): 520-525.
MA Yong, SHAO Xiaoliang, ZHOU Xuezheng, et al. Research on the control of local thermal environment in gymnasium by air-conditioning units[J]. Journal of Xi'an Institute of Physical Education, 2017, 34(5): 520-525.
[14]李晋, 卢频, 郑海林.亚热带地区自然通风体育馆室内热舒适范围[J].土木与环境工程学报(中英文), 2019, 41(5): 173-182.
LI Jin, LU Pin, ZHENG Hailin. Indoor thermal comfort range of natural ventilation gymnasium in subtropical area[J]. Journal of Civil and Environmental Engineering, 2019, 41(5): 173-182.
[15]黄晓丹, 刘佳妮, 郭文智. 广州地区自然通风体育馆室内热舒适研究[J]. 暖通空调, 2019, 49(4): 133-138.
HUANG Xiaodan, LIU Jiani, GUO Wenzhi. Research on indoor thermal comfort of natural ventilation gymnasiums in Guangzhou area[J]. HVAC, 2019, 49(4): 133-138.
[16]阴悦, 胡建辉, 陈务军, 等. 封闭式膜结构体育馆冬季热环境测试[J].上海交通大学学报, 2018, 52(11): 1452-1458.
YIN Yue, HU Jianhui, CHEN Wujun, et al. Winter thermal environment test of closed membrane structure gymnasium[J].Journal of Shanghai Jiaotong University, 2018, 52(11): 1452-1458.
[17]HU J, CHEN W, ZHANG S, et al. Thermal characteristics and comfort assessment of enclosed large-span membrane stadiums[J]. Applied Energy, 2018, 229:728-735.
[18]李金平, 王兆福, 王航, 等. 严寒地区主被动太阳能协同采暖室内舒适度研究[J]. 西安建筑科技大学学报(自然科学版), 2019, 51(4): 584-590.
LI Jinping, WANG Zhaofu, WANG Hang, et al. Study on indoor comfort of active and passive solar energy coordinated heating in severe cold area[J]. J. Xi'an Univ. of Arch. and Tech.(Natural Science Edition), 2019, 51(4): 584-590.
[19]王文新, 梁雨, 李金娟, 等. 内蒙地区农宅围护结构太阳辐射吸收系数研究[J]. 西安建筑科技大学学报(自然科学版), 2020, 52(5): 730-739.
WANG Wenxin, LIANG Yu, LI Jinjuan, et al. Research on solar radiation absorption coefficient of farm house enclosure in Inner Mongolia[J]. J. Xi'an Univ. of Arch. and Tech.(Natural Science Edition), 2020, 52(5): 730-739.
[20]范存养. 大空间建筑空调设计及工程实录[M]. 北京:中国建筑工业出版社, 2011,4-13.
FAN Cunyang. Air conditioning design and engineering record of large space buildings[M]. Beijing:China Building Industry Press, 2011, 4-13.
[21]DE DEAR R, BRAGER G. Towards an adaptive model of thermal comfort and preference[J]. ASHRAE Transactions, 1998, 104(1):145-167.
[22]AINSWORTH B E, HASKELL W L, WHITT M C, et al. Compendium of physical activities: an update of activity codes and MET intensities[J]. Medicine & Science in Sports & Exercise, 2000, 32(9):498-504.
[23]BUTTE N F, WATSON K B, RIDLEY K, et al. A youth compendium of physical activities: Activity codes and metabolic intensities[J]. Medicine and science in Sports and Exercise, 2018, 50(2): 246-256.
[24]党睿, 闫紫薇, 刘魁星, 等. 寒冷地区大型商业综合体冬季室内热舒适评价模型研究[J]. 建筑科学, 2017, 33(12): 16-21.
DANG Rui, YAN Ziwei, LIU Kuixing, et al. Research on evaluation model of indoor thermal comfort in large commercial complex in cold area[J]. Architecture Science, 2017, 33(12): 16-21.

相似文献/References:

[1]耿 耿,耿 静,尹红梅,等.严寒地区办公建筑中庭空间参数化节能设计[J].西安建筑科技大学学报(自然科学版),2020,(06):895.[doi:10.15986/j.1006-7930.2020.06.017 ]
 GENG Geng,GENG Jing,YIN Hongmei,et al.Parametric design of atrium space energy efficiency for office building in severe cold region[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2020,(01):895.[doi:10.15986/j.1006-7930.2020.06.017 ]

备注/Memo

备注/Memo:
收稿日期:2021-07-29修改稿日期:2022-01-20
基金项目:内蒙古自然科学基金(2020LH05002,2019MS05019)
第一作者:白叶飞(1979—),男,博士,副教授,主要从事可再生能源等方面研究,E-mail:baiyefei@imut.edu.cn 通信作者:赵淋涛(1996—),男,硕士生,主要从事建筑室内热舒适研究,E-mail:619206618@qq.com

更新日期/Last Update: 2022-02-20