[1]成 彤,李宁景,陈光明,等.带纤维编织网增强ECC层钢管混凝土轴压力学性能试验研究[J].西安建筑科技大学学报(自然科学版),2022,(02):202-210.[doi:10.15986/j.1006-7930.2022.02.006]
 CHENG Tong,LI Ningjing,CHEN Guangming,et al.Experimental study on axial compressive mechanical properties of concrete-filled steel tube with ECC layer reinforced by textile[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2022,(02):202-210.[doi:10.15986/j.1006-7930.2022.02.006]
点击复制

带纤维编织网增强ECC层钢管混凝土轴压力学性能试验研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
期数:
2022年02期
页码:
202-210
栏目:
出版日期:
2022-04-28

文章信息/Info

Title:
Experimental study on axial compressive mechanical properties of concrete-filled steel tube with ECC layer reinforced by textile
文章编号:
1006-7930(2022)02-0202-09
作者:
成 彤1李宁景2陈光明2李召兵1熊 焱2赵新宇2
(1.广州市城建规划设计院有限公司, 广东 广州 510230; 2.华南理工大学 亚热带建筑科学国家重点实验室, 广东 广州 510641)
Author(s):
CHENG Tong1LI Ningjing2CHEN Guangming2LI Zhaobing1XIONG Yan2ZHAO Xinyu2
(1.Guangzhou Urban Construction Planning & Design Co.Ltd., Guangzhou 510230, China; 2.State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510641, China)
关键词:
钢管混凝土柱 纤维编织网 ECC 轴压 组合结构
Keywords:
CFST column textile ECC axial compression composite structure
分类号:
TU398+.9
DOI:
10.15986/j.1006-7930.2022.02.006
文献标志码:
A
摘要:
钢管混凝土柱由于受压力学性能良好、施工方便,已经在土木工程结构中大量使用.耐腐蚀及耐火性能较差,轴压时钢管易向外局部屈曲是其主要不足.ECC(Engineered Cementitious Composite)是一种具有多裂缝开展和应变硬化特征的纤维增强水泥基复合材料,具有延性好、韧性高、耐久性好等优点.用带纤维编织网增强ECC层来加固钢管混凝土结构,可克服上述不足(耐火性能不足、钢管易屈曲),同时也增加钢管混凝土的耐久性性能.由此,针对纤维编织网增强ECC层加固钢管混凝土柱进行了系列研究.本文介绍带纤维编织网增强ECC层加固钢管混凝土柱常温下轴压力学性能试验研究结果.后续还研究了高温对带纤维编织网增强ECC层加固钢管混凝土柱受压力学能的影响,相关研究成果将另文介绍.
Abstract:
Concrete-filled steel tubular(CFST)columns have been widely used in civil engineering structures due to their good compressive mechanical properties and construction convenience. However, their corrosion resistance and fire resistance are poor, and the steel tube is prone to outward local buckling under axial compression. ECC(engineered cementitious compositeengineered cementitious composite)is a fiber-reinforced cement-based composite with the characteristics of multi-cracking and strain hardening(after cracking), which has the advantages of good ductility, high toughness and excellent durability. Therefore, strengthening the CFST column with textile-reinforced ECC(TR-ECC)layer can overcome the above shortcomings, and enhance the durability of CFST. Based on this concept, a series of studies have been carried out in the authors’ research group on the compression behavior of CFST strengthened by the TR-ECC layer. In this paper the test results of the axial compression behavior of CFST strengthened by TR-ECC layer at ambient temperature are presented, while the influence of higher temperature on the compressive mechanical properties of CFST strengthened by TRECC layer has been also studied, and the related research results will be introduced in another paper.

参考文献/References:

[1]韩林海.钢管混凝土结构的特点及发展[J].工业建筑,1998(10):1-5, 29.
HAN Linhai, Characteristics and development of concrete-filled steel tube structures[J]. Industrial Construction,1998(10):1-5,29.
[2]蔡绍怀. 现代钢管混凝土结构[M]. 北京: 人民交通出版社, 2003.
CAI Shaohuai. Modern steel tube confined concrete structures[M]. Beijing: China Communications Press, 2003.
[3]李国强, 韩林海, 楼国彪. 钢结构及钢-混凝土组合结构抗火设计[M]. 北京: 中国建筑工业出版社, 2006.
LI Guoqiang, HAN Linhai, LOU Guobiao, Fire resistance design of steel structure and steel-concrete composite structure[M]. Beijing: China Architecture & Building Press, 2006.
[4]李晓东, 靳乐, 孙慧, 等. 钢管混凝土柱抗火性能的试验研究[J]. 实验力学,2013,28(3):376-380.
LI Xiaodong, JIN Dong, SUN Hui, et al, Experimental study on fire resistance of concrete-filled steel tube column[J]. Journal of Experimental Mechanics, 2013, 28(3): 376-380.
[5]SAKUMOTO Y, OKADA T, YOSHIDA M, et al. Fire resistance of concrete-filled, fire-resistant steel-tube column[J]. Journal of Materials in Civil Engineering, 1994, 6(2): 169-184.
[6]傅翼飞. 内置高强角钢的方钢管再生块体混凝土柱的轴压及耐火性能研究[D]. 广州:华南理工大学, 2019.
FU Yifei. Study on axial compressive behavior and fire performance of square steel tubular columns filled with recycled lump concrete and high-strength steel angles [D]. Guangzhou: South China University of Technology, 2019.
[7]徐世烺, 蔡向荣. 超高韧性纤维增强水泥基复合材料基本力学性能[J]. 水利学报, 2009, 40(9): 1055-1063.
XU Shilang, CAI Xiangrong. Basic mechanical proper-ties of ultra-high toughness fiber reinforced cement matrix composites[J]. Journal of Hydraulic Engineering,2009,40(9):1055-1063.
[8]FISCHER G. Deformation behavior of reinforced ECC flexural members under reversed cyclic loading conditions [D]. Michigan: University of Michigan, 2002.
[9]李红兵. 超高韧性水泥基复合材料高温性能试验研究[D].南京:东南大学,2016.
LI Hongbing, Experimental research on high temperature properties of engineered cementious composites[D]. Nanjing: Southeast University, 2016.
[10]SAHMARAN M, OZBAY E, YUCEL H E, et al. Effect of fly ash and PVA fiber on microstructural damage and residual properties of engineered cementitious composites exposed to high temperatures [J]. Journal of Materials in Civil Engineering, 2011, 23(12): 1735-1745.
[11]田露丹, 张径伟, 董帅, 等. PVA纤维增韧水泥基复合材料高温后力学性能研究[J]. 混凝土, 2011,(12): 31-33,48.
TIAN Ludan, ZHANG Jingwei, DONG Shuai, et al. Study on mechanical properties of cementious composites reinforced with PVA fibers after high temperatures[J]. Concrete,2011,(12):31-33,48.
[12]李传秀, 尹世平, 赵俊伶. 纤维编织网增强ECC的拉伸和弯曲力学性能[J]. 建筑材料学报, 2021, 24(4): 736-741.
LI Chuanxiu, YIN Shiping, ZHAO Junling. Tensile and bending mechanical performance of textile reinforced ECC[J]. Journal of Building Materials: 2021, 24(4): 736-741.
[13]LI B B, XIONG H B, JIANG J F. Tensile behavior of basalt textile grid reinforced engineering cementitious composite[J]. Composites Part B Engineering, 2019, 156:185-200.
[14]Al-Gemeerl A N, ZHU G Y. Using textile reinforced engineered cementitious composite for concrete columns confinement[J]. Composite Structures, 2019, 210, 695-706.
[15]胡克旭, 高皖扬, 戴建国, 等. 玄武岩纤维编织网增强水泥基复合材料加固火灾后混凝土板的抗弯性能试验研究[C]//.第九届全国建设工程FRP应用学术交流会论文集. 重庆: 中国土木工程协会,2015: 60-65.
HU Kexu, GAO Wanyang, DAI Jianguo, et al. Experimental study on the flexural performance of fire-damaged RC slabs strengthened with basalt textile-reinforced cementitious composites[C]//. Proceedings of the 9th National Academic Exchange conference on FRP Application in Construction Engineering. China: Chongqing: China Civil Engineering Society, 2015: 60-65.
[16]CAI J M, PAN J L, SU H, et al. Experimental study on the hysteretic behavior of ECC-encased CFST columns[J]. Engineering Structures, 2018, 173: 107-121.
[17]CAI J M, PAN J L, LI X P. Behavior of ECC-encased CFST columns under axial compression[J]. Engineering Structures, 2018, 171: 1-9.
[18]YAN Y H, LIANG H J, LU Y Y, et al. Behaviour of concrete-filled steel-tube columns strengthened with high-strength CFRP textile grid-reinforced high-ductility engineered cementitious composites[J]. Construction and Building Materials, 2020.
[19]中国国家标准化管理委员会.建筑构件耐火试验方法 第1部分: 通用要求:GB/T 9978.1-2008[S]. 北京: 中国标准出版社, 2008.
China Association for Standardization. Fire-resistance tests: Elements of building construction—Part 1: General requirements:GB/T 9978.1-2008[S]. Beijing: Standards Press of China, 2008.
[20]陈宗平, 陈俊睿, 薛建阳, 等. 高温后钢材及再生混凝土的力学性能试验研究[J]. 工业建筑, 2014, 44(11): 1-4.
CHEN Zongping, CHEN Junrui, XUE Jianyang. et al. Experimental study of mechanical behavior of steel and recycled aggregate concrete after high temperature [J]. Industrial Construction, 2014, 44(11): 1-4.
[21]American Society for Testing and Materials. Standard test method for static modulus of elasticity and Poisson’s ratio of concrete:ASTM C469/C469M-14 [S]. Pennsylvania, USA: ASTM international, 2014.
[22]Japan Society of Civil Engineers(JSCE), Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks(HPFRCC )[S]. Tokyo: JSCE. 2008.
[23]中国国家标准化管理委员会. 金属材料拉伸试验(第1部分: 室温试验方法):GB/T228.1-2010[S]. 北京: 中国标准出版社, 2010.
China Association for Standardization. Metallic materials: Tensile testing Part 1:Method of test at room temperature: GB/T228.1-2010[S]. Beijing: Standards Press of China, 2010.
[24]柳钦. FRP-高性能混凝土-钢双壁空心管短柱轴压性能研究[D]. 广州:华南理工大学, 2021.
LIU Qing, Study on axial compression performance of FRP-high performance concrete-steel double skin tubular stub column[D]. Guangzhou: South China University of Technology, 2021.

相似文献/References:

[1]赵宝成,朱 浩,何若全,等.钢管混凝土柱与桁架穿芯螺栓端板式连接节点试验研究[J].西安建筑科技大学学报(自然科学版),2012,(02):170.[doi:10.15986/j.1006-7930.2012.02.004]
 ZHAO Bao-cheng,ZHU Hao,HE Ruo-quan,et al.Experimental study of CFT column and truss connections with steel bolt through tubular core and end plate[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2012,(02):170.[doi:10.15986/j.1006-7930.2012.02.004]

备注/Memo

备注/Memo:
收稿日期:2021-04-01修改稿日期:2022-04-17
基金项目:国家自然科学基金资助项目(51978281, 51878298)、广东省现代土木工程技术重点实验室基金资助项目(2021B1212040003)
第一作者:成彤(1968—),男,硕士,高级工程师.主要从事桥梁加固和道路立交设计.E-mail:819680220@qq.com 通信作者:陈光明(1978—),男,博士,教授.主要从事FRP-混凝土-钢新型组合结构和再生混凝土应用研究.E-mail:guangminghen@scut.edu.cn
更新日期/Last Update: 2022-04-28