[1]王俊豪,杨树桐,孙忠科.高温后碱激发海砂混凝土无尺寸效应断裂参数的预测[J].西安建筑科技大学学报(自然科学版),2022,(02):220-227.[doi:10.15986/j.1006-7930.2022.02.008]
 WANG Junhao,YANG Shutong,SUN Zhongke.Prediction of fracture parameters without size effect of Alkali-activated sea sand concrete exposed to elevated temperature[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2022,(02):220-227.[doi:10.15986/j.1006-7930.2022.02.008]
点击复制

高温后碱激发海砂混凝土无尺寸效应断裂参数的预测()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
期数:
2022年02期
页码:
220-227
栏目:
出版日期:
2022-04-28

文章信息/Info

Title:
Prediction of fracture parameters without size effect of Alkali-activated sea sand concrete exposed to elevated temperature
文章编号:
1006-7930(2022)02-0220-08
作者:
王俊豪杨树桐孙忠科
(中国海洋大学 工程学院,山东 青岛 266100)
Author(s):
WANG Junhao YANG Shutong SUN Zhongke
(Department of Civil Engineering, College of Engineering in Ocean University of China, Shandong Qingdao 266100, China)
关键词:
碱激发海水海砂混凝土 高温后 抗压强度 抗拉强度 无尺寸效应断裂参数
Keywords:
Alkali-activated sea sand concrete exposed to elevated temperature compressive strength tensile strength fracture parameters without size effect
分类号:
TU501
DOI:
10.15986/j.1006-7930.2022.02.008
文献标志码:
A
摘要:
海洋环境中服役的结构在受到高温侵蚀作用后产生的损伤是不可估量的.碱激发海砂混凝土抵抗裂缝展开的能力需要被评估后才可以将其应用于海洋环境中.然而混凝土内部通常是不均匀的以及不连续的,并且这种情况在高温作用后会更加明显.为了探究这个问题,本文研究了两种不同矿渣粉(GGBFS)/粉煤灰(FA)质量比海水、海砂拌制的碱激发海砂混凝土在加热制度为10 ℃/min、恒温时间为180 min的情况下加热到200 ℃、400 ℃、600 ℃以及800 ℃的目标温度后的残余力学性能、微观表现以及基于边界效应模型(BEM)通过标准三点弯梁试验对无尺寸效应断裂参数抗拉强度ft和断裂韧度KIC的预测.研究发现:随着高温温度升高,ft和KIC逐渐降低并且降低速度越来越大.在400 ℃以下,更高GGBFS/FA质量比的碱激发海砂混凝土预测得到的断裂参数值比低GGBFS/FA质量比的混凝土高; 超过400 ℃后,前者强度损失更大并且其残余强度明显低于后者.
Abstract:
The damage to structures in service in the marine environment after exposure to the erosive effects of high temperature is incalculable. The ability of alkali-stimulated marine sand concrete to resist crack development needs to be assessed before it can be used in a marine environment. However, concrete is often internally heterogeneous as well as discontinuous, and this becomes more pronounced after high temperatures. In order to explore this problem, this paper studied the residual mechanical properties and microscopic performance of alkali-activated sea sand concrete mixed with seawater and sea sand with two different mass ratios of ground granulated blast-furnace slag( GGBFS )/ fly ash( FA )when heated to 200 ℃, 400 ℃, 600 ℃ and 800 ℃ under the heating system of 10 ℃/min and constant temperature time of 180 min, and based on Boundary Effect Model(BEM), the tensile strength ft and fracture toughness KIC of fracture parameters without size effect were predicted through the standard three-point bending beam test. It was found that with the increase of high temperature, the ft and KIC gradually decreased and the decrease rate was increasing. Below 400 ℃, the predicted fracture parameters of alkali-activated sea sand concrete with higher GGBFS/FA mass ratio were higher than those of concrete with lower GGBFS/FA mass ratio. When the temperature exceeded 400 ℃, the strength loss of the former was greater and its residual strength was significantly lower than that of the latter.

参考文献/References:

[1]2021年1~10月份水泥行业运行情况[J].中国建材,2021(12):84.
Cement industry operation from January to October 2021[J].China Building Materials, 2021(12):84.
[2]傅博. 碱矿渣混凝土耐高温性能研究[D].重庆:重庆大学,2014.
FU Bo. Study on the high temperature resistance of alkali slag concrete[D]. Chongqing: Chongqing University, 2014.
[3]朱晶. 碱矿渣胶凝材料耐高温性能及其在工程中应用基础研究[D].哈尔滨:哈尔滨工业大学,2014.
ZHU Jing. Basic research on the high temperature resistance of alkali slag cementitious materials and its application in engineering[D]. Harbin:Harbin Institute of Technology, 2014.
[4]MANJUNATH R, MATTUR C, NARASIMHAN K M Umesha. Studies on high performance alkali activated slag concrete mixes subjected to aggressive environments and sustained elevated temperatures[J]. Construction and Building Materials,2019,229:1-19.
[5]Serhat ?elikten, Mustafa Sardemir, brahim ?zgür Deneme. Mechanical and microstructural properties of alkali-activated slag and slag: fly ash mortars exposed to high temperature[J]. Construction and Building Materials,2019,217:50-61.
[6]LI Yinglei, ZHAO Xiaoling, Singh Raman R K, et al. Thermal and mechanical properties of alkali-activated slag paste, mortar and concrete utilising seawater and sea sand[J]. Construction and Building Materials,2018,159:706-724.
[7]HU X Z, WITTMANN F H. Fracture energy and fracture process zone[J]. Materials and Structures,1992,25(6):319-326.
[8]HU Xiaozhi, FOLKER Wittmann. Size effect on toughness induced by crack close to free surface[J]. Engineering Fracture Mechanics,2000,65(2):209-221.
[9]HU Xiaozhi, DUAN Kai. Size effect and quasi-brittle fracture: the role of FPZ[J]. International Journal of Fracture,2009,154(1/2):3-14.
[10]HU Xiaozhi, DUAN Kai. Size effect: Influence of proximity of fracture process zone to specimen boundary[J]. Engineering Fracture Mechanics,2006,74(7):1093-1100.
[11]Standard practice for the preparation of substitute ocean water: ASTM D1141-98[S]. West Conshohocken, PA: ASTM International, 2013.
[12]中华人民共和国住房和城乡建设部.普通混凝土力学性能试验方法标准:GB/T50081[S]. 北京:中国建筑科学研究院,2019.
MHURO. Standard for mechanical properties of ordinary concrete: GB/T50081[S]. Beijing: China Academy of Building Research, 2019..
[13]SONG S, SOHN D, JENNINGS H M, et al. Hydration of alkali-activated ground granulated blast furnace slag[J]. Journal of Materials Science,2000,35(1):249-257.
[14]Fernández-Jiménez A, PUERTAS F. Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements[J]. Advances in Cement Research,2003,15(3):129-136.
[15]Pawel Sikora, Krzysztof Cendrowski, Mohamed Abd Elrahman, et al. The effects of seawater on the hydration, microstructure and strength development of Portland cement pastes incorporating colloidal silica[J]. Applied Nanoscience,2019,10:2627-2638.
[16]WANG Junjie, LIU Engui LI Liang. Multiscale investigations on hydration mechanisms in seawater OPC paste[J]. Construction and Building Materials,2018,191:891-903.
[17]NASSER K W, MARZOUK H M. Properties of mass concrete containing fly ash at high temperatures[J]. Journal Proceedings,1979,76(4):537-550.
[18]ZUDA L, PAVLíK Z, ROVNANíKOVá P, et al. Properties of alkali activated aluminosilicate material after thermal load[J]. International Journal of Thermophysics,2006,27(4):1250-1263.
[19]DEFALLA R D. Effect of exposure to elevated temperatures on geopolymer concrete properties[J]. International Journal of Civil Engineering and Technology, 2019, 10(10):448-461.
[20]Gkhan Kürklü. The effect of high temperature on the design of blast furnace slag and coarse fly ash-based geopolymer mortar[J]. Composites Part B: Engineering, 2016, 92:9-18.
[21]SUSAN A Bernal, Erich D Rodríguez, Ruby Mejía de Gutiérrez, et al. Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends[J]. Journal of Materials Science,2011,46(16):5477-5486.
[22]SASUI Sasui, KIM Gyuyong, NAM Jeongsoo, et al. Effects of waste glass sand on the thermal behavior and strength of fly ash and GGBS based alkali activated mortar exposed to elevated temperature[J]. Construction and Building Materials,2022,316:1-18.
[23]Zdeněk P Baant, YU Qiang. Universal size effect law and effect of crack depth on quasi-brittle structure strength[J]. Journal of Engineering Mechanics,2009,135(2):78-84.
[24]YANG Shutong, LI Linzhen, SUN Zhongke, et al. A closed-form fracture model to predict tensile strength and fracture toughness of alkali-activated slag and fly ash blended concrete made by sea sand and recycled coarse aggregate[J]. Construction and Building Materials,2021,300:1-16.
[25]YANG S, ZHANG X, YU M, et al. An analytical approach to predict fracture parameters of coral aggregate concrete immersed in seawater[J]. Ocean Engineering, 2019, 191:1-14.
[26]高丽敏. 碱激发粉煤灰胶凝材料性能研究[D].哈尔滨:哈尔滨工业大学,2007.
GAO Limin. Study on the mechanical properties of alkali-activated fly ash cementitious materials[D].Harbin: Harbin Institute of Technology, 2007.

备注/Memo

备注/Memo:
收稿日期:2021-04-01修改稿日期:2021-04-19
基金项目:国家自然科学基金(52178259); 山东省重点研发项目(2019GSF111059)
第一作者:王俊豪(1996—),男,硕士,主要从事碱激发混凝土力学性能研究.E-mail:3037367818@qq.com 通信作者:杨树桐(1979—),男,教授,博士生导师,主要从事混凝土断裂力学研究.E-mail:shutongyang2013@163.com
更新日期/Last Update: 2022-04-28