[1]脱 俗,余 勇,陈文广,等.基于贝叶斯理论的钢筋再生混凝土梁受剪承载力预测模型[J].西安建筑科技大学学报(自然科学版),2022,(02):242-250.[doi:10.15986/j.1006-7930.2022.02.011]
 TUO Su,YU Yong,CHEN Wenguang,et al.Prediction model for shear capacity of reinforced recycled aggregate concrete beam based on Bayesian theory[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2022,(02):242-250.[doi:10.15986/j.1006-7930.2022.02.011]
点击复制

基于贝叶斯理论的钢筋再生混凝土梁受剪承载力预测模型()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
期数:
2022年02期
页码:
242-250
栏目:
出版日期:
2022-04-28

文章信息/Info

Title:
Prediction model for shear capacity of reinforced recycled aggregate concrete beam based on Bayesian theory
文章编号:
1006-7930(2022)02-0242-09
作者:
脱 俗1余 勇2陈文广3郭雄伟4王忠东4徐金俊3
(1.东莞职业技术学院 商贸学院,广东 东莞 523808; 2.东莞理工学院 生态环境与建筑工程学院,广东 东莞 523808; 3.南京工业大学 土木工程学院,江苏 南京 211816; 4.中建七局(上海)有限公司,上海 201800)
Author(s):
TUO Su1 YU Yong2 CHEN Wenguang3 GUO Xiongwei4 WANG Zhongdong4 XU Jinjun3
(1.School of Commerce and Trade, Dongguan Polytechnic, Guangdong Dongguan 523808, China; 2.School of Environment and Civil Engineering, Dongguan Univ. of Tech., Guangdong Dongguan 523808, China; 3.College of Civil Engineering, Nanjing Tech University, Nanjing 211816, China; 4.China Construction Seventh Engineering Division(Shanghai)Co., Ltd., Shanghai 201800, China)
关键词:
再生混凝土无腹筋梁 受剪承载力 贝叶斯模型修正
Keywords:
reinforced recycled aggregate concrete beam without stirrups shear capacity Bayesian model updating
分类号:
TU375.3
DOI:
10.15986/j.1006-7930.2022.02.011
文献标志码:
A
摘要:
受剪承载力是开展钢筋再生混凝土结构设计和修复加固所依据的重要性能指标之一,发展其计算理论具有较强的科学与实践意义.然而受制于有限的试验数据及再生混凝土材性离散较大等原因,现行规范在预估此类构件受剪承载力时,往往简单对混凝土强度进行折减,套用普通钢筋混凝土构件的计算公式.该法通常存在精度低和稳定性差等问题.为此,首先尝试建立包含206根再生混凝土无腹筋梁的抗剪试验数据库,用以评估现存规范与经验计算公式的准确性及可靠性; 紧接着,选定预测效果较好的ACI318-2014规范和学者Zsutty建议公式为先验模型,基于贝叶斯统计理论对先验模型和试验信息进行统计推断,构建起无箍筋钢筋再生混凝土梁受剪承载力计算概率模型; 随后通过未知参数的筛选剔除,修正得到后验模型.研究结果表明:贝叶斯方法充分融合了先验模型的完备性及大量试验数据的准确性,能更精准地预测再生混凝土无腹筋梁的受剪强度.
Abstract:
Shear capacity is one of the important performance indicators for the design and repair of reinforced recycled aggregate concrete(RAC)structures, so it is of great scientific and practical significance to develop its calculation method. At present stage, due to the shortage of test results and the high variability for the RAC’s mechanical property, most specifications still applies calculation formulas of conventional concrete beam to estimate that capacity by simply reducing the RAC’s strength, which usually has problems such as low accuracy and poor stability. In view of this, a shear test database containing 206 reinforced RAC beams without stirrups was first established to evaluate the accuracy and reliability of existing specifications and empirical formulas. Then, the ACI318-2014 code with good prediction effect and the formula suggested by scholar Zsutty were selected as the prior model, and the prior model and test information were statistically inferred based on Bayesian statistical theory to build the probability model for calculating shear capacity of reinforced RAC beams without stirrups. Finally, Bayesian parameter culling process was adopted to eliminate the secondary influential factors, and new predictive expressions were acquired. The results showed that the Bayesian method fully integrated the completeness of the prior model and the accuracy of a large number of test data, and could predict the reinforced RAC beam’s shear strength more accurately.

参考文献/References:

[1]YU Y, ZHENG Y, GUO Y C, et al. Mesoscale finite element modeling of recycled aggregate concrete under axial tension[J]. Construction and Building Materials, 2021, 266, 121002,1-20.
[2]National Bureaus of Statistics of China. China statistical yearbook[M]. Beijing: China Statistics Press, 2019.
[3]XIE T Y, ALIAKBAR G, TOGAY O. Toward the development of sustainable concretes with recycled concrete aggregates: Comprehensive review of studies on mechanical properties[J]. Journal of Materials in Civil Engineering, 2018, 30(9): 04018211,1-20.
[4]XIAO J Z. Recycled aggregate concrete structures[M]. Berlin:Springer, 2018.
[5]SILVA R V, de Brito J, DHIR R K. Tensile strength behaviour of recycled aggregate concrete[J]. Construction and Building Materials, 2015, 83: 108-118.
[6]SILVA R V, de Brito J, DHIR R K. The influence of the use of recycled aggregates on the compressive strength of concrete: A review[J]. European Journal of Environmental and Civil Engineering, 2015, 19(7): 825-849.
[7]SILVA R V, de Brito J, DHIR R. K. Establishing a relationship between modulus of elasticity and compressive strength of recycled aggregate concrete[J]. Journal of Cleaner Production, 2016, 112: 2171-2186.
[8]WU, B, YU, Y, ZHAO X Y. Residual mechanical properties of compound concrete containing demolished concrete lumps after exposure to high temperatures[J]. Fire Safety Journal, 2019, 105: 62-78.
[9]过镇海, 时旭东. 钢筋混凝土原理和分析[M]. 北京:清华大学出版社, 2003.
GUO Z H, SHI X D. Reinforced concrete theory and analyse[M]. Beijing: Tsinghua University Press, 2003.
[10]刘彬, 张建仁, 王磊, 等. 钢筋混凝土梁抗剪承载力计算理论综述(上)[J]. 中外公路, 2011, 31(2): 150-158.
LIU B, ZHANG J R, WANG L, et al. Calculation theories for reinforced concrete structures[J]. Journal of China & Foreign Highway, 2011, 31(2): 150-158.
[11]刘伯权, 刘喜, 吴涛. 基于共轭先验分布的深受弯构件受剪承载力概率模型分析[J]. 工程力学, 2015, 32(4): 169-177.
LIU B Q, LIU X, WU T. Probabilistic shear strength model for deep flexural members based on conjugate prior distribution[J]. Engineering Mechanics, 2015, 32(4): 169-177.
[12]罗大明, 张桂涛. 基于贝叶斯理论的氯离子扩散系数计算模型[J]. 西安建筑科技大学学报, 2019, 51(5): 710-716.
LUO D M, ZHANG G T. Calculation model of chloride diffusion coefficient based on Bayesian theory[J]. Xi’an Univ. of Arch. & Tech.(Natural Science Edition), 2019, 51(5): 710-716.
[13]刘佩, 袁泉, 魏庆朝. 钢筋混凝土柱恢复力模型参数识别的贝叶斯法. 华中科技大学学报, 2013, 41(9): 72-75.
LIU P, YUAN Q, WEI Q C. Bayesian approach for restoring force model parameter identification of reinforced concrete column[J]. Huazhong University of Science and Technology(Natural Science Edition), 2013, 41(9): 72-75.
[14]陈景, 李翔宇. 基于贝叶斯理论的 FRP 约束矩形混凝土柱轴压极限强度研究[J]. 复合材料科学与工程, 2020(7): 58-67.
CHEN J, LI X Y. Research on axial compression ultimate strength of FRP-confined rectangular concrete column based on Bayesian theory[J]. Science and Engineering of Composite Materials, 2020(7): 58-67.
[15]YU Y, ZHAO X Y, XU J J, et al. Machine learning-based evaluation of shear capacity of recycled aggregate concrete beams[J]. Materials, 2020, 13(20): 4552,1-32.
[16]González-Fonteboa B, Martínez-Abella F. Shear strength of recycled concrete beams[J]. Construction and Building Materials, 2007, 21(4): 887-893.
[17]FATHIFAZL G, RAZAQPUR A G, ISGOR O B, et al. Shear strength of reinforced recycled concrete beams with stirrups[J]. Magazine of Concrete Research, 2010, 62(10): 685-699.
[18]CHOI H B, YI C, CHOI H H, et al. Experimental study on the shear strength of recycled aggregate concrete beams[J]. Magazine of Concrete Research, 2010, 62(2): 103-114.
[19]FATHIFAZL G, RAZAQPUR A G., ISGOR O B, et al. Shear capacity evaluation of steel reinforced recycled concrete(RRC)beams[J]. Engineering Structures, 2011, 33(3): 1025-1033.
[20]AREZOUMANDI M, SMITH A, VOLZ J S, et al. An experimental study on shear strength of reinforced concrete beams with 100% recycled concrete aggregate[J]. Construction and Building Materials, 2014, 53: 612-620.
[21]KNAACK A M, KURAMA Y C. Behavior of reinforced concrete beams with recycled concrete coarse aggregates[J]. Journal of Structural Engineering, 2015, 141(3): B4014009,2705-2716.
[22]KATKHUDA H, SHATARAT N. Shear behavior of reinforced concrete beams using treated recycled concrete aggregate[J]. Construction and Building Materials, 2016, 125: 63-71.
[23]Ignjatovic I S, Marinkovic S B, Toic N. Shear behaviour of recycled aggregate concrete beams with and without shear reinforcement[J]. Engineering Structures, 2017, 141: 386-401.
[24]RAHAL K N, ALREFAEI Y T. Shear strength of longitudinally reinforced recycled aggregate concrete beams[J]. Engineering Structures, 2017, 145: 273-282.
[25]PRADHAN S, KUMAR S, BARAI S V. Shear performance of recycled aggregate concrete beams: An insight for design aspects[J]. Construction and Building Materials, 2018, 178: 593-611.
[26]WARDEH G, GHORBEL E. Shear strength of reinforced concrete beams with recycled aggregates[J]. Advances in Structural Engineering, 2019, 22(8): 1938-1951.
[27]HAN B C, YUN H D, CHUNG S Y. Shear capacity of reinforced concrete beams made with recycled-aggregate[J]. ACI Special Publication, 2001, 200: 503-516.
[28]ZHANG L S, ZHANG X L, YAN G X. Experimental research on the shear capacity of recycled concrete beams without stirrups[J]. Industrial Construction, 2007, 37(9): 57-61.
[29]ZHAO J Y, YANG Q W, ZHANG Y, et al. Experimental study on shear performance of recycled concrete beams without web reinforcements[J]. Concrete, 2017, 6: 39-42.
[30]NI T Y, SUN W, GUO Z G. Experimental study on shear behavior of recycled concrete beams without stirrup[J]. Sichuan Building Science, 2010, 36(1): 5-7.
[31]SATO R, MARUYAMA I, SOGABE T, et al. Flexural behavior of reinforced recycled concrete beams[J]. Journal of Advanced Concrete Technology, 2007, 5(1): 43-61.
[32]KIM S W, JEONG C Y, LEE J S, et al. Size effect in shear failure of reinforced concrete beams with recycled aggregate[J]. Journal of Asian Architecture and Building Engineering, 2013, 12(2): 323-330.
[33]CHOI W C, YUN H D. Shear strength of reinforced recycled aggregate concrete beams without shear reinforcements[J]. Journal of Civil Engineering and Management, 2017, 23(1): 76-84.
[34]Al-Zahraa F, El-Mihilmy M T, BAHAA T. Experimental investigation of shear strength of concrete beams with recycled concrete aggregates[J]. International Journal of Materials and Structural Integrity, 2011, 5(4): 291-310.
[35]ETXEBERRIA M, MARí A R., Vázquez E. Recycled aggregate concrete as structural material[J]. Materials and Structures, 2007, 40(5): 529-541.
[36]IKEGAWA T, SAITO H, OHUCHI H, et al. Flexural and shear failure tests of reinforced concrete beams with low grade recycled aggregate[J]. International Journal of Civil Engineering and Technology, 2009, 50(12): 29-36.
[37]BENTZ E C, COLLINS M P. Updating the ACI shear design provisions[M]. Concrete International, 2017, 39: 33-37.
[38]American Concrete Institute. Building code requirements for structural concrete:(ACI 318-14)and Commentar ACI318-2014[S]. MI, USA: Farmington Hills, 2014.
[39]HURD. Code for Design of Concrete Structures: GB 50010-2010[S]. Beijing: Construction and Building Industry Press, 2010.
[40]Japan Standardization Committee. Guidelines for concrete no. 15. standard specifications for concrete structures[M]. Tokyo, Japan: JSCE,2007.
[41]Standardiztion Commission of New Zealand. The Design of Concrete Structures: NZS 3101-2006[S]. Wellington, New Zealand: Buiding Industry Authority. 2006.
[42]ZSUTTY T C. Beam shear strength prediction by analysis of existing data[J]. ACI Journal. Proceeding. 1968, 65: 943-951.
[43]MUTTONI A, Fernández R M. Shear strength of members without transverse reinforcement as function of critical shear crack width[J]. ACI Structure Journal, 2008, 2: 163-172.
[44]ZHANG J P. Diagonal cracking and shear strength of reinforced concrete beams[J]. Magazine of Concrete Research, 1997, 49: 55-65.
[45]LUO W, LE J, RASOOLINEJAD M, et al. Coefficient of variation of shear strength of RC beams and size effect[J]. Journal of Engineering Mechanics, 2021, 147(2), 04020144,1-29.

备注/Memo

备注/Memo:
收稿日期:2021-04-01修改稿日期:2021-04-20
基金项目:国家自然科学基金资助项目(52008108)和广东省基础与应用基础研究基金粤莞区域联合青年基金项目(2019A1515110481)
第一作者:脱俗(1990—),女,硕士,助教,主要研究方向:废旧混凝土循环利用技术.E-mail:tstuosu@foxmail.com 通信作者:徐金俊(1986—),男,工学博士,副教授,主要研究方向:现代高性能组合及混合结构.E-mail:jjxu_concrete@njtech.edu.cn
更新日期/Last Update: 2022-04-28