[1]江佳斐,廖 昊,薛伟辰,等.螺旋箍筋约束叠合剪力墙14 mm竖向钢筋搭接性能试验研究[J].西安建筑科技大学学报(自然科学版),2022,(02):251-256+290.[doi:10.15986/j.1006-7930.2022.02.012]
 JIANG Jiafei,LIAO Hao,XUE Weichen,et al.Experimental study on performance of 14 mm reinforcement splices confined by spiral stirrups in the composite concrete shear wall[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2022,(02):251-256+290.[doi:10.15986/j.1006-7930.2022.02.012]
点击复制

螺旋箍筋约束叠合剪力墙14 mm竖向钢筋搭接性能试验研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
期数:
2022年02期
页码:
251-256+290
栏目:
出版日期:
2022-04-28

文章信息/Info

Title:
Experimental study on performance of 14 mm reinforcement splices confined by spiral stirrups in the composite concrete shear wall
文章编号:
1006-7930(2022)02-0251-06
作者:
江佳斐廖 昊薛伟辰隋 凯
(同济大学 土木工程学院,上海 200092)
Author(s):
JIANG Jiafei LIAO Hao XUE Weichen SUI Kai
(College of Civil Engineering, Tongji University, Shanghai 200092)
关键词:
钢筋搭接 螺旋箍筋 拉拔试验 搭接强度 搭接长度 粘结应力分布
Keywords:
reinforcement splice spiral stirrups pull-out test splice strength splice length distribution of bond stress
分类号:
TU398+.9
DOI:
10.15986/j.1006-7930.2022.02.012
文献标志码:
A
摘要:
针对螺旋箍筋约束叠合剪力墙14 mm竖向钢筋搭接试件进行了拉拔试验,共设计了7个试件.为避免加载偏心,试件采用2对2搭接方式,试验参变量为搭接长度(0.25la, 0.45la,la为钢筋基本锚固长度),配箍率(0,0.8%,2.8%,3.1%)和混凝土强度(C45,C55).其中,4个试件的搭接钢筋预先开槽,重点研究不同参变量对粘结应力分布规律的影响.搭接长度为0.45la试件组的试验结果表明:当配箍率为0.8%时,搭接试件叠合界面不发生劈裂破坏,钢筋屈服后拔出,峰值强度和对应滑移值较无箍筋约束试件的特征值分别提升了27.1%、158.4%; 当配箍率从0.8%增加到2.8%时,峰值强度和对应滑移值分别提升了2.1%、38.1%,钢筋被拔出并拉断.开槽钢筋的搭接性能试验结果表明:搭接长度为0.45la时,试件的应力分布均呈多峰型分布,无箍筋试件的最大应力峰靠近自由端,2.8%配箍率试件的最大应力峰靠近加载端,两试件最大应力峰峰值分别为20.9 MPa,20.2 MPa,相差3%; 搭接长度为0.25la,配箍率为3.1%时,两种不同混凝土强度试件的粘结应力分布均呈双峰型分布,两试件最大应力峰峰值分别为17.37 MPa,17.5 MPa,相差1%.
Abstract:
The pull-out test was carried out on 14 mm reinforcement splice specimens confined by spiral stirrups in the composite concrete shear wall, and seven specimens were designed with the test variables of splice length(0.25la, 0.45la, la is the basic anchorage length), spiral ratio(0,0.8%, 2.8%, 3.1%), and concrete strength(C45, C55). To avoid the eccentric loading, the specimens were designed as a double lapping configuration. Among them, four specimens had the slotted reinforcement to investigate the bond stress distribution. The test results of specimens with 0.45la splice length showed that no splitting failure along the concrete interface was observed in the specimens with spiral ratio of 0.8%. The reinforcement was pulled out after yielding, and the peak load and the corresponding slip increased by 27.1% and 158.4% respectively compared with those of specimen without spiral stirrups. When the spiral ratio increased from 0.8% to 2.8%, the peak load and the corresponding slip value of specimen increased by 2.1% and 38.1%, and the reinforcement ruptured after it was pulled out. The test with slotted reinforcement demonstrated that when the splice length was 0.45la, the bond stress distribution was a multi-peak type. The maximum stress peak of the specimen without stirrups was close to the free end, and the location of maximum stress peak of the specimen with 2.8% stirrup ratio was close to the loaded end. The maximum stress peak values of the two specimens were 20.9 MPa and 20.2 MPa respectively, with a difference of 3%. When the splice length was 0.25 and the spiral ratio was 3.1%, the bond stress distributions of two specimens with different concrete strength were double-peak distribution, and the maximum stress peaks of two specimens were 17.37 MPa and 17.5 MPa, respectively, with a difference of 1%.

参考文献/References:

[1]薛伟辰, 胡翔. 预制混凝土剪力墙结构体系研究进展[J]. 建筑结构学报, 2019, 40(2):44-55.
XUE Weichen, HU Xiang. State of the art of studies on precast concrete shear wall structures[J]. Journal of Building Structures, 2019, 40(2):44-55.
[2]中华人民共和国住房和城乡建设部.装配式混凝土建筑技术标准: GB/T 51231—2016[S]. 北京: 中国建筑工业出版社,2016.
Minsty of HURD of China. Technical standard for assembled buildings with concrete structure: GB/T 51231—2016[S].Beijing: China Architecture & Building Press,2016.
[3]刘硕,胡翔,周鑫,薛伟辰.直径10mm和14mm钢筋约束搭接连接力学性能试验研究[J]. 施工技术, 2017, 46(4):13-17.
LIU Shuo, HU Xiang, ZHOU Xin, et al. Test of mechanical properties of constraint lap connection of steel bars[J]. Construction Technology, 2017, 46(4):13-17.
[4]JIANG J, LUO J, XUE W, et al. Seismic performance of precast concrete double skin shear walls with different vertical connection types[J]. Engineering Structures, 2021, 245: 112911. 1-13.
[5]JIANG J, XUE W, LUO J, et al. Hysteresis behavior of precast concrete composite shear walls with improved vertical connections[J]. Structures, 2022, 36: 533-548.
[6]EINEA A, YEHIA S, TADROS M K. Lap splices in confined concrete[J]. ACI-Structural Journal, 1999, 96(6): 947-955.
[7]马军卫,尹万云,刘守城,等. 钢筋约束浆锚搭接连接的试验研究[J]. 建筑结构, 2015,2:32-35,79.
MA Junwei, YIN Wanyun, LIU Shoucheng, et al. Experimental study on constraint grout-filled lap connection of steel bar[J]. Building Structure, 2015,2:32-35,79.
[8]张海顺. 预制混凝土结构插入式预留孔灌浆钢筋锚固搭接试验研究[D].哈尔滨:哈尔滨工业大学, 2009.
ZHANG Haishun. Experimental study of plug-in filling hole for lap-joint of steel bar of PC concrete structure[D]. Harbin: Harbin Institute of Technology, 2009.
[9]赵培. 约束浆锚钢筋搭接连接试验研究[D]. 哈尔滨:哈尔滨工业大学, 2011.
ZHAO Pei. Experimental research on restraint grouting-anchoring overlap-joint of steel bar[D]. Harbin: Harbin Institute of Technology, 2011.
[10]倪英华. 约束浆锚连接极限搭接长度试验研究[D]. 哈尔滨:哈尔滨工业大学,2014.
NI Huaying. Experimental research on the ultimate lap length of the restraint grouting-anchoring overlap-joint of steel bar[D]. Harbin: Harbin Institute of Technology, 2014.
[11]江佳斐, 隋凯, 马川峰; 等. 预制装配式混凝土螺旋箍筋约束浆锚钢筋搭接性能研究现状[J], 施工技术, 2018(12): 44-47.
JIANG Jiafei, SUI Kai, MA Chuanfeng, et al. Review of grout-filled rebar splicing confined by spiral stirrups for precast concrete[J]. Construction Technology, 2018(12): 44-47.
[12]American Concrete Institute(ACI). Bond and development of straight reinforcing bars in tension: ACI 408R-03[S]. MI:Farmington Hills, 2003.
[13]北京市规划委员会. 装配式剪力墙结构设计规程: DB11/1003—2013[S]. 北京:中国建筑工业出版社,2014.
Beijing Planning Commission. Design specification for precast concrete shear wall structure: DB11/1003—2013[S]. Beijing: China Architecture and Building Press, 2014.
[14]黑龙江省住房和城乡建设厅. 预制装配整体式房屋混凝土剪力墙结构技术规范: DB23/T1813—2016[S]. 哈尔滨:哈尔滨工业大学出版社, 2016.
Heilongjiang Provincial Department of Housing and Urban-Rural Development. Technical specification for concrete shear wall structure assembled with precast components: DB23/T1813—2016[S]. Harbin: Harbin Institute of Technology Press, 2016.
[15]SAGAN V, GERGELYE P, WHITE R N. Behavior and design of noncontact lap splices subjected to repeated inelastic tensile loading[R]. Report No. 858-5. Ithaca:Department of Structural Engineering Research, Cornell University, 1988.
[16]徐有邻, 沈文都. 钢筋砼粘结锚固性能的试验研究[J]. 建筑结构学报, 1994, 15(3): 26-37.
XU Youlin, SHEN Wendu. Experimental study on bond anchorage performance of reinforced concrete[J]. Journal of Building Structures, 1994, 15(3): 26-37.
[17]高丹盈, 陈刚, Hadi Muhammad Najib Sadraddin,等. 钢筋与钢纤维混凝土的黏结-滑移性能及其关系模型[J]. 建筑结构学报, 2015, 36(7):132-139.
GAO Danying, CHEN Gang, Hadi Muhammad Najib Sadraddin, et al. Bond-slip behavior and constitutive model between rebar and steel fiber reinforced concrete[J]. Journal of Building Structures, 2015, 36(7):132-139.

备注/Memo

备注/Memo:
收稿日期:2021-04-01修改稿日期:2021-04-20
基金项目:国家重点研发计划基金资助项目(2016YFC0701403)
第一作者:江佳斐(1984—),女,博士,副教授,主要从事土木工程中FRP应用,预制混凝土等方面的研究.E-mail:jfjiang@tongji.edu.cn 通信作者:薛伟辰(1970—),男,博士,教授.主要从事预制混凝土、现代预应力混凝土、土木工程中FRP应用等方面的研究.E-mail:wcxue@tongji.edu.cn
更新日期/Last Update: 2022-04-28