[1]吴 辉,黄 旻,张力文,等.椰子纤维MPC复合水泥基材料受压性能试验研究[J].西安建筑科技大学学报(自然科学版),2022,(02):257-266.[doi:10.15986/j.1006-7930.2022.02.013]
 WU Hui,HUANG Min,ZHANG Liwen,et al.Experimental study on compressive performance of coconut fiber MPC composite cement-based materials[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2022,(02):257-266.[doi:10.15986/j.1006-7930.2022.02.013]
点击复制

椰子纤维MPC复合水泥基材料受压性能试验研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
期数:
2022年02期
页码:
257-266
栏目:
出版日期:
2022-04-28

文章信息/Info

Title:
Experimental study on compressive performance of coconut fiber MPC composite cement-based materials
文章编号:
1006-7930(2022)02-0257-10
作者:
吴 辉1黄 旻1张力文1谢柱坚2张俊平2
(1.广州大学 土木工程学院,广东 广州 510006; 2.广州大学工程抗震研究中心,广东 广州 510006)
Author(s):
WU Hui1 HUANG Min1 ZHANG Liwen1 XIE Zhujian2 ZHANG Junping2
(1.School of Civil Engineering, Guangzhou University, Guangzhou 510006, China; 2.Earthquake Engineering Research and Test Center, Guangzhou University, Guangzhou 510006, China)
关键词:
桥梁加固 抗压性能 磷酸镁水泥 椰子纤维 养护龄期 能量吸收
Keywords:
bridge reinforcement compressive properties magnesium phosphate cement coir fiber curing age energy absorption
分类号:
U444
DOI:
10.15986/j.1006-7930.2022.02.013
文献标志码:
A
摘要:
磷酸镁水泥(Magnesium Phosphate Cement,简称MPC)是一种早期强度高、凝结硬化快、干缩变形小、粘结能力强的胶凝材料,可用于高架桥、机场跑道和市政主干道的快速修补等方面.然而,MPC存在韧性差、抗裂性能差的缺点,严重限制了MPC在实际修复工程中的应用.经前期研究发现,在MPC中掺入椰子纤维(Coconut Fiber,简称CF)能有效提高其抗裂性能,然而,CF对MPC力学性能的影响规律和作用机理尚未清晰,因此,需要对椰子纤维加固磷酸镁水泥(Coir Fiber Reinforced Magnesium Phosphate Cement,简称CF-MPC)这一新型生态复合材料进行系列研究.本文主要研究不同体积掺量(1%、2%、3%、4%)CF在不同养护龄期(7 d、28 d)下对MPC静态受压性能的影响.首先,通过静态压缩试验分析了椰子纤维掺量和养护龄期对CF-MPC试件的破坏形态、抗压强度、应力-应变曲线和能量吸收性能的影响规律; 其次,通过扫描电子显微镜(Scanning Electron Microscope,简称SEM)和X射线衍射(X-ray diffraction,简称XRD)分析,测试了不同CF掺量在不同养护龄期下,CF-MPC微观结构和水化组分的变化规律,从本质上探明了CF对上述宏观力学性能的影响机理.结果表明:在7 d、28 d两个养护龄期下,CF掺量对MPC静态抗压性能的影响相似.当CF掺量高于1%时,MPC脆性明显降低,且CF掺量为2%时,试件破坏形态由脆性变为一定的延性; CF-MPC试件抗压强度、弹性模量和割线模量随椰子纤维掺量的增加而略有降低,但随龄期的增长而增大; 能量吸收随着CF掺量的增加及龄期的增长均呈增大趋势,且当CF掺量为4%、龄期为28 d时能量吸收达到最大; 微观分析中,随着CF掺量的增长,主要水化产物六水磷酸钾镁(MgKPO4·6H2O,简称MKP)逐渐减少,而随着龄期的增长MKP逐渐增加.
Abstract:
Magnesium phosphate cement(MPC)is a kind of cementing material with high early strength, quick setting and hardening, small drying and shrinkage deformation, and strong bonding ability, which can be used for rapid repair of viaducts, airport runways, and municipal main roads. However, some of its defects, e.g., the low toughness and poor crack resistance, become obstacle to further applications. Previous study has shown that the anti-cracking performance of MPC can be significantly improved by adding appropriate amount of coconut fiber(CF). However, the effect law and action mechanism of CF on the mechanical behavior of the MPC are not yet clear. Thus, it is necessary to carry out a systematic study on coconut fibre reinforced magnesium phosphate cement(CF-MPC), which is a new ecological composite material. In this paper, the effects of different CF volume dosages(1%, 2%, 3%, 4%)at different curing ages(7 d, 28 d)on the static compression performance of MPC has been studied. Firstly, a uniaxial static compression test was conducted to analyze the influence of CF dosage and curing age on the failure mode, compressive strength, stress-strain curve, and energy absorption performance of CF-MPC. Secondly, the microstructure and hydration components of CF-MPC with different CF dosage at different curing ages were tested and analyzed by means of scanning electron microscope(SEM)and X-ray diffraction(XRD), and the influence mechanism of CF on the macroscopic mechanical properties of MPC was revealed. The results showed that the effects of CF dosage on MPC static compression performance at the curing ages of 7 d and 28 d were similar. When CF dosage was higher than 1%, the brittleness of MPC was significantly reduced, and when CF dosage was 2%, the failure mode of the specimen changed from brittleness to a certain ductility. The compressive strength, elastic modulus and secant modulus of CF-MPC specimens decreased slightly with the increase of coconut fiber content, but increased with the increase of age. Energy absorption increased with the increase of CF dosage and curing age, and reached the maximum when CF dosage was 4% and curing age was 28 d. In microscopic analysis, the main hydration product, potassium magnesium phosphate hexahydrate(MKP), gradually decreased with the increase of CF dosage, while MKP gradually increased with the growth of curing age.

参考文献/References:

[1]ROY D M. New strong cement materials: chemically bonded ceramics[J]. Science. 1987, 235, 651-658.
[2]ABDELRAZIG B E I, SHARP J H, El-Jazairi B. The chemical composition of mortars made from magnesia phosphate cement[J]. Cement and Concrete Research. 1988, 18, 415-425.
[3]肖炳斐,陈玥,房琦,等.磷酸镁水泥复合材料的研究进展[J]. 功能材料, 2020, 51(8): 8007-8013.
XIAO Bingfei, CHEN Yue, FANG Qi, et al. Research progresses on magnesium phosphate cement-based composites: a review[J]. Journal of Functional Materials. 2020, 51(8): 8007-8013.
[4]QIAO Fei, CHAU C K, LI Zongjin. Property evaluation of magnesium phosphate cement mortar as patch repair material[J]. Construction and Building Materials, 2010, 24(5): 695-700.
[5]YANG Q B, ZHU B R, Zhang S Q. Properties and applications of magnesia-phosphate cement mortar for rapid repair of concrete[J]. Cement and Concrete Research. 2000, 30, 1807-1813.
[6]FENG H, CHEN G, GAO D. Mechanical properties of steel fiber-reinforced magnesium phosphate cement mortar[J]. Advances in Civil Engineering. 2018, 2018(PT.1), 1-11.
[7]冯虎,赵晓聪,高丹盈,等.微细钢纤维磷酸镁水泥砂浆的基本力学性能[J]. 新型建筑材料, 2018, 45(9): 16-20.
FENg Hu, ZHAO Xiaocong, GAO Danying, et al. Basic mechanical behavior of micro steel fiber reinforced magnesia-phosphate-cement mortar[J]. New Building Materials, 2018, 45(9): 16-20.
[8]AHMAD M R, CHEN B. Effect of silica fume and basalt fiber on the mechanical properties and microstructure of magnesium phosphate cement(MPC)mortar[J]. Construction and Building Materials, 2018, 190, 466-478.
[9]刘雪敏,申选召,贾慧娜.玄武岩纤维增强磷酸镁水泥砂浆力学性能试验研究[J]. 混凝土与水泥制品, 2020(6): 49-52,56
LIU Xuemin, SHEN Xuanzhao, JIA Huina. Experimental study on the mechanical property of basalt fibre reinforced magnesium phosphate cement mortar[J]. China Concrete and Cement Product, 2020(6): 49-52,56.
[10]FANG Y, CUI P, DING Z, et al. Properties of a magnesium phosphate cement-based fire-retardant coating containing glass fiber or glass fiber powder[J]. Construction and Building Materials. 2018, 162, 553-560.
[11]单春明,杨建明,陈延东,等.聚丙烯纤维增韧改性磷酸钾镁水泥基材料的力学性能试验[J]. 沈阳大学学报(自然科学版), 2020, 32(1): 58-65.
SHAN Chunming, YANG Jianming, CHEN Yandong, et al. Mechanical properties test of magnesium phosphate cement-based materials toughened by poiypropylene fibers[J], Journal of Shenyang University(Natural Science), 2020, 32(1): 58-65.
[12]AHMAD M R, CHEN B, HAQUE M A, et al. Development of a sustainable and innovant hygrothermal bio-composite featuring the enhanced mechanical properties[J]. Journal of Cleaner Production. 2019, 229, 128-43.
[13]LECOMPTE T, PERROT A, SUBRIANTO A. A novel pull-out device used to study the influence of pressure during processing of cement-based material reinforced with coir[J]. Construction and Building Materials, 2015, 78, 224-233.
[14]PAUL A, THOMAS S. Electrical properties of natural-fiber-reinforced low-density polyethylene composites: A comparison with carbon black and glass-fiber-filled low-density polyethylene composites[J]. Journal of Applied Polymer Science, 1997, 63, 247-266.
[15]Ali M, Liu A, Sou H, et al. Mechanical and dynamic properties of coconut fiber reinforced concrete[J]. Construction and Building Materials, 2012, 30, 814-825.
[16]ALI M, LI X Y; CHOUW N. Experimental investigations on bond strength between coconut fiber and concrete[J]. Materials and Design, 2013, 44, 596-605.
[17]BARUAH P, TALUKDAR S. A comparative study of compressive, flexural, tensile and shear strength of concrete with fibres of different origins[J]. Indian Concrete Journal, 2007, 81, 17-24.
[18]Gautam Basu, Leena Mishra, Ashis Kumar Samanta. Investigation of structure and property of indian cocos nucifera L. fibre[J]. Journal of The Institution of Engineers(India): Series E, 2017, 98(2): 135-140.
[19]王轶默,吕阳,刘卓霖,等.磷酸镁水泥研究进展[J].科技资讯,2019,17(2):113-116.
WANG Yimo, YANG Lv, LIU Zhuolin, et al. Research progress of magnesium phosphate cement[J]. Science&Technology Information, 2019, 17(2): 113-116.
[20]THANUSHAN K, YOGANANTH Y, SANGEETH P, et al. Strength and durability characteristics of coconut fiber reinforced earth cement blocks[J]. Journal of Natural Fibers. 2021, 18,773-788.
[21]LI Z J, WANG L J, WANG X G. Flexural characteristics of coir fiber reinforced cementitious composites[J]. Fibers and Polymers. 2006, 7(3), 286-294.
[22]Zainorizuan Mohd Jaini, Shahrul Niza Mokhatar, Ammar Saifuddin Mohd Yusof, et al. Effect of pelletized coconut fibre on the compressive strength of foamed concrete[J]. MATEC Web of Conferences, 2016, 47: 1-7.
[23]Nabihah Mohd Zamzani, Azree Othuman Mydin, Abdul Naser Abdul Ghani. Experimental investigation on engineering properties of lightweight foamed concrete(LFC)with coconut fiber addition[J]. MATEC Web of Conferences, 2018, 250(17): 1-8.
[24]Subramanian Shanmugapuram Vivek, Chandrasekaran Prabalini. Experimental and microstructure study on coconut fibre reinforced self-compacting concrete(CFRSCC)[J]. Asian Journal of Civil Engineering, 2021, 22, 111-123.
[25]ZHANG Liwen, JIANG Zuqian, WU Hui, et al. Flexural properties of renewable coir fiber reinforced magnesium phosphate cement, considering fiber length[J]. Materials, 2020, 13(17): 3692.
[26]ZHANG Liwen, JIANG Zuqian, ZHANG Wenhua, et al. Flexural properties and microstructure mechanisms of renewable coir-fiber-reinforced magnesium phosphate cement-based composite considering curing ages[J]. Polymers, 2020, 12(11): 1-21.
[27]JIANG Zuqian, ZHANG Liwen, GENG Tao, et al. Study on the compressive properties of magnesium phosphate cement mixing with eco-Friendly coir fiber considering fiber length[J]. Materials, 2020, 13(14): 1-12.
[28]Standard Test Method for Compressive Strength of Hydraulic Cement Mortars: ASTM C109-16.[S]. Pennsylvania, USA: American Society for Testing and Materials, ASTM International, 2016.
[29]Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression: ASTM C469-14.[S]. Pennsylvania, USA: American Society for Testing and Materials, ASTM International, 2014.
[30]XU B W, LOTHENBACH B, LEEMANN A, et al. Reaction mechanism of magnesium potassium phosphate cement with high magnesium-to-phosphate ratio[J]. Cement and Concrete Research. 2018, 108, 140-51.
[31]SWAMY P A V B. Efficient inference in a random coefficient regression model[J]. Econometrica. 1970, 38, 311-323.

备注/Memo

备注/Memo:
收稿日期:2021-04-01修改稿日期:2021-04-20
基金项目:国家自然科学基金项目(551608137); 广州市市校联合项目基础与应用基础研究基金项目(202102010431); 广州大学全日制研究生基础创新基金资助项目(2020GDJC-M36)、广州大学大学生创新训练基金资助项目(202111078042)
第一作者:吴辉(1997—),男,硕士,主要从事桥梁新结构、新材料及复合材料性能的研究.E-mail:whi1223@163.com 通信作者:张力文(1983—),男,博士,讲师,主要从事桥梁新结构、新材料及复合材料性能的研究.E-mail:lwzhang@gzhu.edu.cn
更新日期/Last Update: 2022-04-28