[1]苏三庆,刘子毅,王 威,等.侵蚀环境作用下海底隧道管片耐久性研究进展[J].西安建筑科技大学学报(自然科学版),2022,(05):633-645.[doi:10.15986/j.1006-7930.2022.05.001 ]
 SU Sanqing,LIU Ziyi,WANG Wei,et al.Research progress on durability of subsea tunnel segments under erosion environment[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2022,(05):633-645.[doi:10.15986/j.1006-7930.2022.05.001 ]
点击复制

侵蚀环境作用下海底隧道管片耐久性研究进展()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
期数:
2022年05期
页码:
633-645
栏目:
出版日期:
2022-10-28

文章信息/Info

Title:
Research progress on durability of subsea tunnel segments under erosion environment
文章编号:
1006-7930(2022)05-0633-13
作者:
苏三庆刘子毅王 威宋江良李 昱
(西安建筑科技大学 土木工程学院,陕西 西安 710055)
Author(s):
SU Sanqing LIU Ziyi WANG Wei SONG Jiangliang LI Yu
(School of Civil Engineering, Xi'an Univ. of Arch. & Tech., Xi'an 710055, China)
关键词:
盾构管片 氯离子侵蚀 碳化 纤维 耐久性
Keywords:
shield segment chloride ion erosion carbonization fiber durability
分类号:
U459.5
DOI:
10.15986/j.1006-7930.2022.05.001
文献标志码:
A
摘要:
海底隧道盾构管片作为盾构法隧道的内支撑,是承担海底土压力、高水压力的永久性衬砌结构.由于海底隧道处于海底复杂的运营环境之下,多重因素的耦合作用将直接影响到海底隧道的整体安全与耐久性能.因此针对管片间连接件可能受到的损伤因素以及接头处的渗漏问题,氯离子对管片的侵蚀与防护,隧道内高浓度二氧化碳对混凝土管片的碳化与防护,以及纤维掺入对混凝土管片力学性能的提升做了系统性阐述,为海底隧道的安全运营与后期维护提供了研究思路.
Abstract:
Shield segment of subsea tunnel, as the inner support of shield tunnel, is a permanent lining structure that bears the seabed earth pressure and high water pressure. Due to the complex operating environment of subsea tunnel, the coupling of multiple factors will directly affect the overall safety and durability of subsea tunnel. In view of the possible damage factors of connectors between segments and the leakage problem at joints, this paper systematically expounds the erosion and protection of chloride ions on segments, the carbonization and protection of concrete segments by high concentration of carbon dioxide in tunnels, and the improvement of mechanical properties of concrete segments by fiber mixing, which provides research ideas for safe operation and later maintenance of subsea tunnels.

参考文献/References:

[1]蔚立元. 水下隧道围岩稳定性研究及其覆盖层厚度确定[D]. 济南:山东大学, 2010.
WEI Liyuan. Tudy on stability of surrounding rocks and selection of overburden thickness for underwater tunnels[D]. Jinan: Shandong university, 2010.
[2]吴怀娜, 沈水龙, 马宇宏, 等. 上海越江隧道渗漏现状调查与分析[J].地下空间与工程学报, 2013, 9(3): 663-668.
WU Huaina, SHEN Shuilong, MA Yuhong, et al. Investigation and analysis on the leakage of the river-crossing tunnels in Shanghai[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(3): 663-668.
[3]刘印, 张冬梅, 黄宏伟. 盾构隧道局部长期渗水对隧道变形及地表沉降的影响分析[J]. 岩土力学, 2013, 34(1): 290-298,304.
LIU Yin,ZHANG Dongme,HUANG Hongwei. Influence of long-term partial drainage of shield tunnel on tunnel deformation and surface settlement[J]. Rock and Soil Mechanics, 2013,34(1): 290-298,304.
[4]田世雄, 唐学军, 王永刚, 等. 新七道梁隧道大型火灾损毁调查及处治方案[J]. 现代隧道技术, 2013, 50(2): 181-186.
TIAN Shixiong, TANG Xuejun, WANG Yonggang, et al. Investigation and treatment of extensive fire damage in the New Qidaoliang tunnel[J]. Modern Tunnelling Technology, 2013, 50(2): 181-186.
[5]师永翔, 赵武胜. 大直径盾构隧道管片接头抗弯性能研究[J]. 现代隧道技术, 2013, 50(1): 115-122, 133.
SHI Yongxiang, ZHAO Wusheng. Research on flexural rigidity of the segment joint of a large-diameter shield tunnel[J]. Modern Tunnelling Technology, 2013, 50(1): 115-122, 133.
[6]张厚美, 傅德明, 过迟. 盾构隧道管片接头荷载试验研究[J]. 现代隧道技术, 2002(6): 28-33, 41.
ZHANG Houmei, FU Deming, GUO Chi. Study on load test of segment joint in shield driven tunnel[J]. Modern Tunnelling Technology, 2002(6): 28-33, 41.
[7]BLOM C, VAN D, JOVANOVIC P S. Three-dimensional structural analyses of the shield-driven “Green Heart” tunnel of the high-speed line South[J]. Tunnelling & Underground Space Technology, 1999, 14(2):217-224.
[8]LIANG L, LU X, FAN P. Full-ring experimental study of the lining structure of Shanghai Changjiang Tunnel[J]. 土木工程与建筑, 2011, 5(8): 732-739.
[9]ZUO L, ZHANG J, FENG K, et al. Experimental study on Inter-ring joint shearing characteristics of gas transmission shield tunnel with bent bolt and tenon[J]. Tunnelling and Underground Space Technology, 2022, 130: 104732.
[10]张稳军, 王博达, 张高乐. 错台对盾构隧道接缝受力及防水性能的影响分析[J].土木工程学报, 2020, 53(S1): 63-68.
ZHANG Wenjun, WANG Boda, ZHANG Gaole. The influence of dislocation on the stress and waterproof performance of shield tunnel joint[J]. China civil engineering journal, 2020, 53(S1): 63-68.
[11]LIU H, SONG K, YE Z, et al. Seismic fragility analysis of in-service shield tunnels considering surface building and joint-bolt corrosion[J]. Soil Dynamics and Earthquake Engineering, 2022, 162: 107455.
[12]李保军, 钟毅, 张冬梅. 螺栓锈蚀对盾构隧道接头抗弯性能的影响研究[J]. 隧道建设, 2020, 40(S2): 67-75.
LI Baojun, ZHONG Yi, ZHANG Dongmei. Effect of bolt corrosion on bending behavior of segmental joints of shield tunnel[J]. Tunnel Construction, 2020, 40(S2): 67-75.
[13]刘腾, 袁大军, 王安华, 等. 火灾对原型盾构管片接头防水性能损伤试验研究[J].土木工程学报, 2016, 49(7): 116-122.
LIU Teng, YUAN Dajun, WANG Anhua, et al. Experimental study on watertight performance of prototype shield tunnel segment joint affected by fire[J]. China Civil Engineering Journal, 2016, 49(7): 116-122.
[14]耿萍, 王琦, 郭翔宇, 等. 盾构隧道纵向接头抗拉性能试验[J]. 中国公路学报, 2020, 33(7): 124-134.
GENG Ping, WANG Qi, GUO Xiangyu, et al. Pull-out test of longitudinal joints of shield tunnel[J]. China Journal of Highway and Transport, 2020, 33(7): 124- 134.
[15]YAN Q, XU Y, ZHANG W, et al. Numerical analysis of the cracking and failure behaviors of segmental lining structure of an underwater shield tunnel subjected to a derailed high-speed train impact[J]. Tunnelling and Underground Space Technology, 2018, 72: 41-54.
[16]刘四进, 何川, 孙齐, 等. 基于全寿命劣化分析的海底盾构隧道管片安全保障对策研究[J]. 中国工程科学, 2017, 19(6): 52-60.
LIU Sijin, HE Chuan, SUN Qi, et al. Safety guarantee measures for subsea shield tunnel segments based on life cycle deterioration analysis[J]. Strategic Study of CAE, 2017, 19(6): 52-60.
[17]HIRONAGA M, NAGURA K, ENDO T, et al. The establishment of a method for evaluating the long-term water-tighness durability of underground concrete structures taking into acount of some deteriorations[J]. Doboku Gakkai Ronbunshu, 1994(502): 63-72.
[18]刘四进, 何川, 封坤, 等. 受荷状态下盾构隧道管片锈蚀劣化破坏过程研究[J]. 土木工程学报, 2018, 51(6): 120-128.
LIU Sijin, HE Chuan, FENG Kun, et al. Research on corrosion deterioration and failure process of shield tunnel segments under loads[J]. China Civil Engineering Journal, 2018, 51(6): 120.
[19]LEI M, PENG L, SHI C. An experimental study on durability of shield segments under load and chloride environment coupling effect[J]. Tunnelling and Underground Space Technology, 2014, 42: 15-24.
[20]孙齐, 刘四进. 渗漏水对隧道管片接头氯离子侵蚀劣化的影响研究[J].现代隧道技术, 2019, 56(5): 142-149.
SUN Qi, LIU Sijin. Study on the effect of leakage water on chloride erosion degradation in tunnel segment joint[J]. Modern Tunnel Technology, 2019, 56(5): 142-149.
[21]徐少云, 高培伟, 肖忠平, 等. 地铁隧道管片裂缝修补后的抗侵蚀性能研究[J]. 现代隧道技术, 2019, 56(1): 159-163, 168.
XU Shaoyun, GAO Peiwei, XIAO Zhongping, et al. Study on corrosion resistance of metro tunnel segment after crack repair[J]. Modern tunnelling technology, 2019, 56(1): 159-163, 168.
[22]詹国良, 陈泽灵, 郑楚茂, 等. 地铁盾构管片混凝土电通量性能的试验研究[J]. 混凝土, 2016(4): 130-132.
ZHAN Guoliang, CHEN Zeling, ZNENG Chumao, et al. Experimental study on electric flux performance of subway shield segment concrete[J]. Concrete, 2016(4): 130-132.
[23]马保国, 杨雷, 高英力. 盾构隧道功能梯度混凝土管片保护层设计及性能[J]. 东南大学学报(自然科学版), 2006(S2): 274-278.
MA Baoguo, YANG Lei, GAO Yingli. Design and property of covering layer of functionally graded concrete segment used in shield tunneling[J]. Journal of southeast university(Natural Science Edition), 2006(S2): 274-278.
[24]楚健, 陈凯华, 查昞豪, 等. 氯离子作用下橡胶密封垫防水性能数值模拟[J]. 地下空间与工程学报, 2019, 15(S1): 144-149.
CHU Jian, CHEN Kaihua, ZHA Binghao, et al. Numerical simulation of waterproof performance of rubber sealing gaskets under chloride ion erosion[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(S1): 144-149.
[25]Koichi Maekawa, Rajesh Chaube, Toshiharu Kishi, Modeling of concrete performance[R]. E and FN SPON: London and New York, 1999. 2017.
[26]王艺霖, 王顺尧, 刘巧玲. 活性掺合料对混凝土抗碳化性能影响的研究[J]. 硅酸盐通报, 2021, 40(2): 439-446.
WANG Yilin, WANG Shunyao, LIU Qiaoling. Influences of active admixtures on anti-carbonization performance of concrete[J]. Bulletin of the Chinese Ceramic society, 2021, 40(2): 439-446.
[27]郭寅川,黄忠财,王文真,等.湿热环境下SAP内养生混凝土抗碳化性能及机理研究[J].建筑材料学报,2022,25(1):16-23.
GUO Yinchuan, HUANG Zhongcai, WANG Wenzhen, et al. Investigation of carbonation resistance and mechanism of SAP internal curing concrete in humid and hot environment[J]. Journal of Building Materials, 2022, 25(1): 16-23
[28]张旭辉, 刘博文, 杨玲, 等. 不同温度和强度影响下混凝土碳化性能试验研究[J]. 建筑结构, 2020, 50(24): 110-115.
ZHANG Xuhui, LIU Bowen, YANG Ling, et al. Experimental study on concrete carbonation performance under the influence of different temperature and strength[J]. Building Structure, 2020, 50(24): 110-115.
[29]刘明辉, 贾思毅, 丁晓, 等. 弯曲荷载作用下硫酸钙晶须混凝土碳化研究[J]. 土木工程学报, 2020, 53(12): 66-73.
LIU Minghui, JIA Siyi, DING Xiao, et al. Research on carbonation of CSW concrete under flexural loadings[J]. China Civil Engineering Journal, 2020, 53(12): 66-73.
[30]朱国飞, 叶志鑫, 崔宏志. 涂料及表面打磨对混凝土碳化影响的研究[J]. 混凝土, 2013(1): 10-12, 17.
ZHU Guofei, YE Zhixin, CUI Hongzhi. Study of effects of paint s and surface polishing on concrete carbonation [J]. Concrete, 2013(1): 10-12, 17.
[31]CHEN D, FENG Y, SHEN J, et al. Experimental and simulation study on chloride diffusion in unsaturated concrete under the coupled effect of carbonation and loading [J]. Structures, 2022, 43: 1356-1368.
[32]BOUCHAALA F, PAYAN C, GARNIER V, et al. Carbonation assessment in concrete by nonlinear ultrasound[J]. Cement & Concrete Research, 2011, 41(5): 557-559.
[33]HURLEY D C, FORTUNKO C M. Determination of the nonlinear ultrasonic parameter using a Michelson interferometer[J]. Measurement Science & Technology, 1997, 8(6): 634-642.
[34]HERRMANN J, KIM J Y, JACOBS L J, et al. Assessment of material damage in a nickel-base superalloy using nonlinear Rayleigh surface waves[J]. Journal of Applied Physics, 2006, 99(12): 1479-1488.
[35]李蓓, 李鑫焱, 金南国, 等. 无损检测技术评估混凝土碳化深度的探讨[J]. 混凝土, 2021(4): 140-145.
LI Bei, LI Xinyi, JIN Nanguo, et al. Discussion on evaluation of concrete carbonation depth by nondestructive testing technology[J]. Concrete, 2021(4): 140-145.
[36]刘晓宙, 朱金林, 尹昌, 等. 岩石等非线性介观弹性固体材料的谐波特性的超声研究[J]. 物理学进展, 2006, 26(3/4): 386-390.
LIU Xiaozhou, ZHU Jinlin, YIN Chang, et al. Ultrasonic study of harmonic properties of nonlinear mesoscopic elastic materials[J]. Progress in Physics, 2006, 26(3/4): 386-390.
[37]GONG C, DING W, MOSALAM K M, et al. Comparison of the structural behavior of reinforced concrete and steel fiber reinforced concrete tunnel segmental joints[J]. Tunnelling and Underground Space Technology, 2017, 68: 38-57.
[38]杨跃, 谭小兵, 朱占国, 等. 无筋钢纤维混凝土偏心受压计算方法研究[J]. 混凝土与水泥制品, 2020(8): 52-55, 70.
YANG Yue, TAN Xiaobing, ZHU Zhanguo, et al. Research on calculation method of eccentric compression of steel fiber reinforced concrete[J]. China Concrete and Cement Products, 2020(8): 52-55, 70.
[39]郑爱元, 徐斌, 陈湘生. 海相地层地铁盾构隧道钢纤维混凝土管片材料性能试验研究[J]. 现代隧道技术, 2019, 56(5): 211-217.
ZHENG Aiyuan, XU Bin, CHEN Xiangsheng. Experimental study on the properties of steel fiber reinforced concrete segments in Marine strata subway shield tunnel[J]. Modern Tunnelling Technology, 2019, 56(5): 211-217.
[40]FENG K, YANG R, GENG J, et al. Experimental investigation of mechanical-performance deterioration of HFRC segment under combined effect of sustained loading and chloride-induced corrosion[J]. Tunnelling and Underground Space Technology, 2021, 114: 104015.
[41]SHARGHI M, CHAKERI H, AFSHIN H, et al. Investigation of the feasibility of using recycled steel fibers in tunnel lining segments[J]. Tunnelling and Underground Space Technology, 2021, 110: 1-14.
[42]明维, 王孟波, 许国林, 等. 高分子合成纤维在管片混凝土中的应用研究[J]. 混凝土与水泥制品, 2019(4): 29-32, 69.
MING Wei, WANG Mengbo, XU Guolin, et al. Study on the application of polymer synthetic fiber in segment concrete[J]. China Concrete and Cement Products, 2019(4): 29-32, 69
[43]ALHOZAIMY A M, SOROUSHIAN P, MIRZA F. Mechanical properties of polypropylene fiber reinforced concrete and the effects of pozzolanic materials[J]. Cement & Concrete Composites, 1996, 18(2):85-92.
[44]齐明山, 柳献. 纤维混凝土盾构管片力学性能试验研究[J]. 地下空间与工程学报, 2019, 15(S1): 55-60.
QI Mingshan, LIU Xian. A full-scale experimental study on bearing capacity of fiber reinforced concrete segments[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(1): 55-60.
[45]邵莲芬, 刘华伟. 高温后纤维混凝土力学性能研究[J]. 新型建筑材料, 2016, 43(7): 38-41.
SHAO Lianfen, LIU Huawei. Research on mechanical properties of fiber reinforced concrete after high temperature exposure[J]. New Building Materials, 2016,43(7): 38-41.
[46]付春松. 粗纤维增强钢筋混凝土截面的时效分析[J].现代隧道技术, 2020, 57(2): 209-217.
FU Chunsong. Timing analysis of section of reinforced concrete reinforced with coarse fiber[J]. Modern tunnelling Technology, 2020, 57(2): 209-217.
[47]沈奕, 闫治国, 沈安迪. 火灾后RC及HFRC隧道管片破坏试验研究[J]. 地下空间与工程学报, 2017, 13(2): 531-537.
SHEN Yi, YAN Zhiguo, SHEN Andi. Experimental study on the post-fire failure mode of RC and HFRC tunnel segments[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(2): 531-537.
[48]徐源, 瞿家宝, 陈阳利, 等. 地铁管片用玄武岩纤维增强水泥混凝土性能试验研究[J]. 铁道建筑, 2014(5): 157-161.
XU Yuan, QU Jiabao, CHEN Yangli, et al. Performance of basalt fiber-reinforced cement-based concrete and its application in metro segmental liner[J]. Railway Engineering, 2014(5): 157-161.
[49]郭进军, 韩菊红, 卢燕. 混合腐蚀环境下改性混凝土的力学性能[J]. 建筑材料学报, 2013, 16(2): 330-334.
GUO Jinjun, HAN Juhong, LU Yan. Mechanical properties of modified concrete exposed to composite corrosive environment[J]. Journal of Building Materials, 2013, 16(2): 330-334.
[50]任延檬, 洪亚强, 李浩, 等. 耐碱玻璃纤维混凝土的高温劈裂抗拉性能[J]. 消防科学与技术, 2015, 34(9): 1138-1141.
REN Yanmeng, HONG Yaqiang, LI Hao, et al. Study on heat transfer simulation of cold-formed steel load-bearing wall with gypsum board sheathing[J]. Fire Science and Technology, 2015, 34(9): 1138-1141.
[51]汪小庆. 复杂环境下地铁海底隧道盾构管片混凝土耐久性研究[D]. 北京:北京交通大学, 2020.
WANG Xiaoqing. Research on durability of shield section concrete of the metro submarine tunnel under complexity environment[D]. Beijing: Beijing Jiaotong University, 2020.
[52]胡长明,郭建霞,梅源,等.盾构同步注浆浆液压力影响因素及扩散机理[J]. 西安建筑科技大学学报(自然科学版),2020,52(5): 617-625.
HU Changming, GUO Jianxia, MEI Yuan, et al. Influence factors and diffusion mechanism of pressure of shield synchronous grouting slurry[J]. J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2020, 52(5): 617-625.

相似文献/References:

[1]童申家,黄 勇,李红涛,等.除冰盐环境下在役RC桥墩时效地震易损性研究[J].西安建筑科技大学学报(自然科学版),2020,(03):315.[doi:10.15986/j.1006-7930.2020.03.002]
 TONG Shenjia,HUANG Yong,LI Hongtao,et al.Study on aging seismic vulnerability of in-service RC bridge piers in deicing salt environment[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2020,(05):315.[doi:10.15986/j.1006-7930.2020.03.002]

备注/Memo

备注/Memo:
收稿日期:2021-06-16修改稿日期:2022-10-08
基金项目:国家自然科学基金面上项目(52278214,51878548); 陕西省自然科学基础研究计划重点基金(2022JZ-21); 西部装配式建筑工业化协同创新中心科学研究计划项目(N202203); 秦创原-未来城市建设与管理创新联合研究中心科研项目(YJZX20210008)
第一作者:苏三庆(1961—),男,教授,博士生导师,主要从事结构抗震设计、健康监测方面的研究.E-mail:sussq@xauat.edu.cn
通信作者:王 威(1972—),男,博士,教授,主要从事组合结构及高层建筑结构抗震等方面的研究.E-mail:wangwgh@xauat.edu.cn
更新日期/Last Update: 2022-10-28