参考文献/References:
[1]蔚立元. 水下隧道围岩稳定性研究及其覆盖层厚度确定[D]. 济南:山东大学, 2010.
WEI Liyuan. Tudy on stability of surrounding rocks and selection of overburden thickness for underwater tunnels[D]. Jinan: Shandong university, 2010.
[2]吴怀娜, 沈水龙, 马宇宏, 等. 上海越江隧道渗漏现状调查与分析[J].地下空间与工程学报, 2013, 9(3): 663-668.
WU Huaina, SHEN Shuilong, MA Yuhong, et al. Investigation and analysis on the leakage of the river-crossing tunnels in Shanghai[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(3): 663-668.
[3]刘印, 张冬梅, 黄宏伟. 盾构隧道局部长期渗水对隧道变形及地表沉降的影响分析[J]. 岩土力学, 2013, 34(1): 290-298,304.
LIU Yin,ZHANG Dongme,HUANG Hongwei. Influence of long-term partial drainage of shield tunnel on tunnel deformation and surface settlement[J]. Rock and Soil Mechanics, 2013,34(1): 290-298,304.
[4]田世雄, 唐学军, 王永刚, 等. 新七道梁隧道大型火灾损毁调查及处治方案[J]. 现代隧道技术, 2013, 50(2): 181-186.
TIAN Shixiong, TANG Xuejun, WANG Yonggang, et al. Investigation and treatment of extensive fire damage in the New Qidaoliang tunnel[J]. Modern Tunnelling Technology, 2013, 50(2): 181-186.
[5]师永翔, 赵武胜. 大直径盾构隧道管片接头抗弯性能研究[J]. 现代隧道技术, 2013, 50(1): 115-122, 133.
SHI Yongxiang, ZHAO Wusheng. Research on flexural rigidity of the segment joint of a large-diameter shield tunnel[J]. Modern Tunnelling Technology, 2013, 50(1): 115-122, 133.
[6]张厚美, 傅德明, 过迟. 盾构隧道管片接头荷载试验研究[J]. 现代隧道技术, 2002(6): 28-33, 41.
ZHANG Houmei, FU Deming, GUO Chi. Study on load test of segment joint in shield driven tunnel[J]. Modern Tunnelling Technology, 2002(6): 28-33, 41.
[7]BLOM C, VAN D, JOVANOVIC P S. Three-dimensional structural analyses of the shield-driven “Green Heart” tunnel of the high-speed line South[J]. Tunnelling & Underground Space Technology, 1999, 14(2):217-224.
[8]LIANG L, LU X, FAN P. Full-ring experimental study of the lining structure of Shanghai Changjiang Tunnel[J]. 土木工程与建筑, 2011, 5(8): 732-739.
[9]ZUO L, ZHANG J, FENG K, et al. Experimental study on Inter-ring joint shearing characteristics of gas transmission shield tunnel with bent bolt and tenon[J]. Tunnelling and Underground Space Technology, 2022, 130: 104732.
[10]张稳军, 王博达, 张高乐. 错台对盾构隧道接缝受力及防水性能的影响分析[J].土木工程学报, 2020, 53(S1): 63-68.
ZHANG Wenjun, WANG Boda, ZHANG Gaole. The influence of dislocation on the stress and waterproof performance of shield tunnel joint[J]. China civil engineering journal, 2020, 53(S1): 63-68.
[11]LIU H, SONG K, YE Z, et al. Seismic fragility analysis of in-service shield tunnels considering surface building and joint-bolt corrosion[J]. Soil Dynamics and Earthquake Engineering, 2022, 162: 107455.
[12]李保军, 钟毅, 张冬梅. 螺栓锈蚀对盾构隧道接头抗弯性能的影响研究[J]. 隧道建设, 2020, 40(S2): 67-75.
LI Baojun, ZHONG Yi, ZHANG Dongmei. Effect of bolt corrosion on bending behavior of segmental joints of shield tunnel[J]. Tunnel Construction, 2020, 40(S2): 67-75.
[13]刘腾, 袁大军, 王安华, 等. 火灾对原型盾构管片接头防水性能损伤试验研究[J].土木工程学报, 2016, 49(7): 116-122.
LIU Teng, YUAN Dajun, WANG Anhua, et al. Experimental study on watertight performance of prototype shield tunnel segment joint affected by fire[J]. China Civil Engineering Journal, 2016, 49(7): 116-122.
[14]耿萍, 王琦, 郭翔宇, 等. 盾构隧道纵向接头抗拉性能试验[J]. 中国公路学报, 2020, 33(7): 124-134.
GENG Ping, WANG Qi, GUO Xiangyu, et al. Pull-out test of longitudinal joints of shield tunnel[J]. China Journal of Highway and Transport, 2020, 33(7): 124- 134.
[15]YAN Q, XU Y, ZHANG W, et al. Numerical analysis of the cracking and failure behaviors of segmental lining structure of an underwater shield tunnel subjected to a derailed high-speed train impact[J]. Tunnelling and Underground Space Technology, 2018, 72: 41-54.
[16]刘四进, 何川, 孙齐, 等. 基于全寿命劣化分析的海底盾构隧道管片安全保障对策研究[J]. 中国工程科学, 2017, 19(6): 52-60.
LIU Sijin, HE Chuan, SUN Qi, et al. Safety guarantee measures for subsea shield tunnel segments based on life cycle deterioration analysis[J]. Strategic Study of CAE, 2017, 19(6): 52-60.
[17]HIRONAGA M, NAGURA K, ENDO T, et al. The establishment of a method for evaluating the long-term water-tighness durability of underground concrete structures taking into acount of some deteriorations[J]. Doboku Gakkai Ronbunshu, 1994(502): 63-72.
[18]刘四进, 何川, 封坤, 等. 受荷状态下盾构隧道管片锈蚀劣化破坏过程研究[J]. 土木工程学报, 2018, 51(6): 120-128.
LIU Sijin, HE Chuan, FENG Kun, et al. Research on corrosion deterioration and failure process of shield tunnel segments under loads[J]. China Civil Engineering Journal, 2018, 51(6): 120.
[19]LEI M, PENG L, SHI C. An experimental study on durability of shield segments under load and chloride environment coupling effect[J]. Tunnelling and Underground Space Technology, 2014, 42: 15-24.
[20]孙齐, 刘四进. 渗漏水对隧道管片接头氯离子侵蚀劣化的影响研究[J].现代隧道技术, 2019, 56(5): 142-149.
SUN Qi, LIU Sijin. Study on the effect of leakage water on chloride erosion degradation in tunnel segment joint[J]. Modern Tunnel Technology, 2019, 56(5): 142-149.
[21]徐少云, 高培伟, 肖忠平, 等. 地铁隧道管片裂缝修补后的抗侵蚀性能研究[J]. 现代隧道技术, 2019, 56(1): 159-163, 168.
XU Shaoyun, GAO Peiwei, XIAO Zhongping, et al. Study on corrosion resistance of metro tunnel segment after crack repair[J]. Modern tunnelling technology, 2019, 56(1): 159-163, 168.
[22]詹国良, 陈泽灵, 郑楚茂, 等. 地铁盾构管片混凝土电通量性能的试验研究[J]. 混凝土, 2016(4): 130-132.
ZHAN Guoliang, CHEN Zeling, ZNENG Chumao, et al. Experimental study on electric flux performance of subway shield segment concrete[J]. Concrete, 2016(4): 130-132.
[23]马保国, 杨雷, 高英力. 盾构隧道功能梯度混凝土管片保护层设计及性能[J]. 东南大学学报(自然科学版), 2006(S2): 274-278.
MA Baoguo, YANG Lei, GAO Yingli. Design and property of covering layer of functionally graded concrete segment used in shield tunneling[J]. Journal of southeast university(Natural Science Edition), 2006(S2): 274-278.
[24]楚健, 陈凯华, 查昞豪, 等. 氯离子作用下橡胶密封垫防水性能数值模拟[J]. 地下空间与工程学报, 2019, 15(S1): 144-149.
CHU Jian, CHEN Kaihua, ZHA Binghao, et al. Numerical simulation of waterproof performance of rubber sealing gaskets under chloride ion erosion[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(S1): 144-149.
[25]Koichi Maekawa, Rajesh Chaube, Toshiharu Kishi, Modeling of concrete performance[R]. E and FN SPON: London and New York, 1999. 2017.
[26]王艺霖, 王顺尧, 刘巧玲. 活性掺合料对混凝土抗碳化性能影响的研究[J]. 硅酸盐通报, 2021, 40(2): 439-446.
WANG Yilin, WANG Shunyao, LIU Qiaoling. Influences of active admixtures on anti-carbonization performance of concrete[J]. Bulletin of the Chinese Ceramic society, 2021, 40(2): 439-446.
[27]郭寅川,黄忠财,王文真,等.湿热环境下SAP内养生混凝土抗碳化性能及机理研究[J].建筑材料学报,2022,25(1):16-23.
GUO Yinchuan, HUANG Zhongcai, WANG Wenzhen, et al. Investigation of carbonation resistance and mechanism of SAP internal curing concrete in humid and hot environment[J]. Journal of Building Materials, 2022, 25(1): 16-23
[28]张旭辉, 刘博文, 杨玲, 等. 不同温度和强度影响下混凝土碳化性能试验研究[J]. 建筑结构, 2020, 50(24): 110-115.
ZHANG Xuhui, LIU Bowen, YANG Ling, et al. Experimental study on concrete carbonation performance under the influence of different temperature and strength[J]. Building Structure, 2020, 50(24): 110-115.
[29]刘明辉, 贾思毅, 丁晓, 等. 弯曲荷载作用下硫酸钙晶须混凝土碳化研究[J]. 土木工程学报, 2020, 53(12): 66-73.
LIU Minghui, JIA Siyi, DING Xiao, et al. Research on carbonation of CSW concrete under flexural loadings[J]. China Civil Engineering Journal, 2020, 53(12): 66-73.
[30]朱国飞, 叶志鑫, 崔宏志. 涂料及表面打磨对混凝土碳化影响的研究[J]. 混凝土, 2013(1): 10-12, 17.
ZHU Guofei, YE Zhixin, CUI Hongzhi. Study of effects of paint s and surface polishing on concrete carbonation [J]. Concrete, 2013(1): 10-12, 17.
[31]CHEN D, FENG Y, SHEN J, et al. Experimental and simulation study on chloride diffusion in unsaturated concrete under the coupled effect of carbonation and loading [J]. Structures, 2022, 43: 1356-1368.
[32]BOUCHAALA F, PAYAN C, GARNIER V, et al. Carbonation assessment in concrete by nonlinear ultrasound[J]. Cement & Concrete Research, 2011, 41(5): 557-559.
[33]HURLEY D C, FORTUNKO C M. Determination of the nonlinear ultrasonic parameter using a Michelson interferometer[J]. Measurement Science & Technology, 1997, 8(6): 634-642.
[34]HERRMANN J, KIM J Y, JACOBS L J, et al. Assessment of material damage in a nickel-base superalloy using nonlinear Rayleigh surface waves[J]. Journal of Applied Physics, 2006, 99(12): 1479-1488.
[35]李蓓, 李鑫焱, 金南国, 等. 无损检测技术评估混凝土碳化深度的探讨[J]. 混凝土, 2021(4): 140-145.
LI Bei, LI Xinyi, JIN Nanguo, et al. Discussion on evaluation of concrete carbonation depth by nondestructive testing technology[J]. Concrete, 2021(4): 140-145.
[36]刘晓宙, 朱金林, 尹昌, 等. 岩石等非线性介观弹性固体材料的谐波特性的超声研究[J]. 物理学进展, 2006, 26(3/4): 386-390.
LIU Xiaozhou, ZHU Jinlin, YIN Chang, et al. Ultrasonic study of harmonic properties of nonlinear mesoscopic elastic materials[J]. Progress in Physics, 2006, 26(3/4): 386-390.
[37]GONG C, DING W, MOSALAM K M, et al. Comparison of the structural behavior of reinforced concrete and steel fiber reinforced concrete tunnel segmental joints[J]. Tunnelling and Underground Space Technology, 2017, 68: 38-57.
[38]杨跃, 谭小兵, 朱占国, 等. 无筋钢纤维混凝土偏心受压计算方法研究[J]. 混凝土与水泥制品, 2020(8): 52-55, 70.
YANG Yue, TAN Xiaobing, ZHU Zhanguo, et al. Research on calculation method of eccentric compression of steel fiber reinforced concrete[J]. China Concrete and Cement Products, 2020(8): 52-55, 70.
[39]郑爱元, 徐斌, 陈湘生. 海相地层地铁盾构隧道钢纤维混凝土管片材料性能试验研究[J]. 现代隧道技术, 2019, 56(5): 211-217.
ZHENG Aiyuan, XU Bin, CHEN Xiangsheng. Experimental study on the properties of steel fiber reinforced concrete segments in Marine strata subway shield tunnel[J]. Modern Tunnelling Technology, 2019, 56(5): 211-217.
[40]FENG K, YANG R, GENG J, et al. Experimental investigation of mechanical-performance deterioration of HFRC segment under combined effect of sustained loading and chloride-induced corrosion[J]. Tunnelling and Underground Space Technology, 2021, 114: 104015.
[41]SHARGHI M, CHAKERI H, AFSHIN H, et al. Investigation of the feasibility of using recycled steel fibers in tunnel lining segments[J]. Tunnelling and Underground Space Technology, 2021, 110: 1-14.
[42]明维, 王孟波, 许国林, 等. 高分子合成纤维在管片混凝土中的应用研究[J]. 混凝土与水泥制品, 2019(4): 29-32, 69.
MING Wei, WANG Mengbo, XU Guolin, et al. Study on the application of polymer synthetic fiber in segment concrete[J]. China Concrete and Cement Products, 2019(4): 29-32, 69
[43]ALHOZAIMY A M, SOROUSHIAN P, MIRZA F. Mechanical properties of polypropylene fiber reinforced concrete and the effects of pozzolanic materials[J]. Cement & Concrete Composites, 1996, 18(2):85-92.
[44]齐明山, 柳献. 纤维混凝土盾构管片力学性能试验研究[J]. 地下空间与工程学报, 2019, 15(S1): 55-60.
QI Mingshan, LIU Xian. A full-scale experimental study on bearing capacity of fiber reinforced concrete segments[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(1): 55-60.
[45]邵莲芬, 刘华伟. 高温后纤维混凝土力学性能研究[J]. 新型建筑材料, 2016, 43(7): 38-41.
SHAO Lianfen, LIU Huawei. Research on mechanical properties of fiber reinforced concrete after high temperature exposure[J]. New Building Materials, 2016,43(7): 38-41.
[46]付春松. 粗纤维增强钢筋混凝土截面的时效分析[J].现代隧道技术, 2020, 57(2): 209-217.
FU Chunsong. Timing analysis of section of reinforced concrete reinforced with coarse fiber[J]. Modern tunnelling Technology, 2020, 57(2): 209-217.
[47]沈奕, 闫治国, 沈安迪. 火灾后RC及HFRC隧道管片破坏试验研究[J]. 地下空间与工程学报, 2017, 13(2): 531-537.
SHEN Yi, YAN Zhiguo, SHEN Andi. Experimental study on the post-fire failure mode of RC and HFRC tunnel segments[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(2): 531-537.
[48]徐源, 瞿家宝, 陈阳利, 等. 地铁管片用玄武岩纤维增强水泥混凝土性能试验研究[J]. 铁道建筑, 2014(5): 157-161.
XU Yuan, QU Jiabao, CHEN Yangli, et al. Performance of basalt fiber-reinforced cement-based concrete and its application in metro segmental liner[J]. Railway Engineering, 2014(5): 157-161.
[49]郭进军, 韩菊红, 卢燕. 混合腐蚀环境下改性混凝土的力学性能[J]. 建筑材料学报, 2013, 16(2): 330-334.
GUO Jinjun, HAN Juhong, LU Yan. Mechanical properties of modified concrete exposed to composite corrosive environment[J]. Journal of Building Materials, 2013, 16(2): 330-334.
[50]任延檬, 洪亚强, 李浩, 等. 耐碱玻璃纤维混凝土的高温劈裂抗拉性能[J]. 消防科学与技术, 2015, 34(9): 1138-1141.
REN Yanmeng, HONG Yaqiang, LI Hao, et al. Study on heat transfer simulation of cold-formed steel load-bearing wall with gypsum board sheathing[J]. Fire Science and Technology, 2015, 34(9): 1138-1141.
[51]汪小庆. 复杂环境下地铁海底隧道盾构管片混凝土耐久性研究[D]. 北京:北京交通大学, 2020.
WANG Xiaoqing. Research on durability of shield section concrete of the metro submarine tunnel under complexity environment[D]. Beijing: Beijing Jiaotong University, 2020.
[52]胡长明,郭建霞,梅源,等.盾构同步注浆浆液压力影响因素及扩散机理[J]. 西安建筑科技大学学报(自然科学版),2020,52(5): 617-625.
HU Changming, GUO Jianxia, MEI Yuan, et al. Influence factors and diffusion mechanism of pressure of shield synchronous grouting slurry[J]. J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2020, 52(5): 617-625.