基金项目:教育部高等学校绿色发展研究基金重点资助项目(2016-11); 基于大数据的智慧校园节能优化策略研究(2016-07).
第一作者:孙 晴(1983-),男,工程师,主要从事建筑智能化方向的研究.E-mail:182180783@qq.com 通信作者:李明海(1971-),博士,教授级高级工程师,从事建筑智能化和建筑节能研究.E-mail:1119003471@qq.com
DOI: 10.15986j.1006-7930.2018.06.024
为了分析高校宿舍能耗的潜在因素,通过DeST软件建立六层宿舍的简易模型,模拟得到了全年的逐时温度、湿度、总辐射、建筑总能耗、照明电耗、设备电耗、给排水电耗数据,并采用SPSS 22统计软件对数据分析,建立了建筑总能耗与给排水、照明和设备电耗的多元线性回归方程.实验结果表明,该模型拟合较好,宿舍总能耗与给排水、照明和设备电耗的简单相关系数依次是0.872、0.693和0.65,与温度、湿度、总辐射的线性关系不明显,该研究为高校管理者对宿舍能耗预测与管理提供了手段.
In order to analyze the potential factors of college dormitory energy consumption, we build a simple model of the six layer dormitory by DeST software.Through the simulation, we obtain the hourly data of temperature,humidity,total radiation,total building energy consumption,lighting,equipment and water power consumption of the dormitory model.Then we use SPSS 22 statistical software to analyze the data and establish a multiple linear regression equation of the total building energy consumption and water,lighting and equipment power consumption.Experimental results show that the model fits better, the simple correlation coefficients between the dormitory total energy consumption and water,lighting and equipment power consumption are 0.872, 0.693 and 0.65,while the simple correlation coefficients between the dormitory total energy consumption and temperature,humidity,total radiation are not obvious.This study provides a means for university administrators to predict and manage the dormitory energy consumption.