[1]吴曦,汪梦甫.早龄期预制叠合剪力墙收缩变形研究和开裂风险预测[J].西安建筑科技大学学报(自然科学版),2021,53(01):61-68.[doi:10.15986/j.1006-7930.2021.01.009]
 WU Xi,WANG Mengfu.Investigation of shrinkage effect and prediction of cracking risk of precast superimposed shear wall at early ages[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(01):61-68.[doi:10.15986/j.1006-7930.2021.01.009]
点击复制

早龄期预制叠合剪力墙收缩变形研究和开裂风险预测()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
53
期数:
2021年01期
页码:
61-68
栏目:
出版日期:
2021-02-28

文章信息/Info

Title:
Investigation of shrinkage effect and prediction of cracking risk of precast superimposed shear wall at early ages
文章编号:
1006-7930(2021)01-0061-08
作者:
吴曦汪梦甫
(湖南大学 土木工程学院,湖南 长沙 410082)
Author(s):
WU Xi WANG Mengfu
(College of Civil Engineering, Hunan University, Changsha 410082, China)
关键词:
叠合剪力墙 收缩 自干燥 湿度扩散 开裂风险
Keywords:
superimposed shear wall shrinkage self-desiccation moisture diffusion cracking ris
分类号:
TU375
DOI:
10.15986/j.1006-7930.2021.01.009
文献标志码:
A
摘要:
为研究早龄期预制叠合剪力墙的收缩变形特性,制作了一片小尺寸预制叠合剪力墙试件并进行试验观测.通过对剪力墙内部自干燥和湿度扩散形成的湿度场计算,基于GL2000收缩模型,对预制叠合剪力墙收缩应变进行了计算分析,计算结果与试验结果吻合良好.比较了墙厚和外部环境湿度条件参数对预制叠合剪力墙收缩变形的影响,并对暴露在不同环境湿度条件下的早龄期预制叠合剪力墙开裂风险进行了预测.
Abstract:
To investigate the shrinkage behavior of precast superimposed reinforced concrete shear wall(SRCSW)at early ages, one SRCSW specimen in small size was constructed and tested. The moisture field of the specimen developed by self-desiccation and moisture diffusion was analyzed. According to the GL2000 theory, the shrinkage response was calculated and the analytical results match well with the test results. Lastly, the influence of wall thickness and the environmental humidity on the shrinkage behavior was discussed and the cracking potential of SRCSW under different environmental humidity conditions was predicted.

参考文献/References:

[1]朱伯芳. 大体积混凝土温度应力与温度控制[M].北京:中国电力出版社, 1999: 1-7.
ZHU Bofang. Temperature stress and temperature control of mass concrete[M]. Beijing: China Electric Power Press,1999: 1-7.
[2]王铁梦. 工程结构裂缝控制[M].北京:中国建筑工业出版社, 2017:4-13.
WANG Tiemeng. Cracking control of engineering structures[M].Beijing: China Architecture & Building Press,2017:4-13.
[3]ZDENK P. Baant, MILAN Jirásek. Creep and hygrothermal effects in concrete structures[J]. Solid Mechanics & Its Applications, 2018(225):43-47.
[4]LIANG Siming, WEI Ya. Methodology of obtaining intrinsic creep property of concrete by flexural deflection test[J]. Cement & Concrete Composites, 2019(97):288-299.
[5]张君, 侯东伟, 高原. 混凝土自收缩与干燥收缩的统一内因[J]. 清华大学学报:自然科学版, 2010, 50(9):1321-1324.
ZHANG Jun, HOU Dongwei, GAO Yuan. Uniform driving force for autogenous and drying shrinkage of concrete[J]. Journal of Tsinghua University(Sci & Tech), 2010, 50(9):1321-1324.
[6]魏亚, 高翔. 混凝土硬化过程中的应力-应变发展和基于内部湿度的开裂风险预估[J]. 工程力学, 2014(3):138-143.
WEI Ya, GAO Xiang. Stress-strain development and prediction of cracking potential based on humidity drop rate of hardening concrete[J]. Engineering Mechanics, 2014(3):138-143.
[7]齐宝库, 王丹, 白庶,等.预制装配式建筑施工常见质量问题与防范措施[J]. 建筑经济, 2016, 37(5):28-30.
QI Baoku, WANG Dan, BAI Shu, et al. Common quality problems and preventive measures of prefabricated construction[J]. Construction Economy, 2016, 37(5):28-30.
[8]中华人民共和国住房和城乡建设部.自密实混凝土应用技术规程:JGJ/T 283-2012[S]. 北京:中国建筑工业出版社, 2012:8-9.
MOHURD.Technical specification for application of self-compacting concrete:JGJ/T 283-2012 [S]. Beijing: China Architecture Building Press. 2012:8-9.
[9]DAVIS H E. Autogenous volume change of concrete[D]//Proceeding of the 43rd Annual American Society for Testing Materials. Atlantic City:ASTM, 1940,1103-1113.
[10]POWERS T C. The thermodynamics of volume change and creep[J]. Matériaux et Constructions, 1968, 1(6):487-507.
[11]KIM J, KIM J K, LEE C. Moisture diffusion of concrete considering self-desiccation at early ages[J]. Cement & Concrete Research, 1999, 29(12):1921-1927.
[12]DING Xiaoping, ZHANG Jun, WANG Jiahe. Integrative modeling on self-desiccation and moisture diffusion in concrete based on variation of water content[J]. Cement &

Concrete Composites, 2019(97):322-340.
[13]KIM J K, HAN S H, LEE K M. Estimation of compressive strength by a new apparent activation energy function[J]. Cement & Concrete Research, 2001, 31(2):217-225.
[14]Comité Euro-International du Béton(CEB). CEB-FIP model code for concrete structures[S]. Switzerland:Lausanne,2010:160-162.
[15]ACI 209R-92. Prediction of creep, shrinkage, and temperature effects in concrete structures. In: Reported by ACI Committee 209[C]. Farmington Hills, MI, USA: American

Concrete Institute; 1992:4-16.
[16]BAZANT. Z. P, HAUGGAARD. A. B, BAWEJA. ULM et al. Microprestress-solidification theory for concrete creep. I: Aging and drying effects[J]. Journal of Engineering Mechanics.

1997,123:1188-1194.
[17]GARDNER N J, LOCKMAN M J. Design provisions for drying shrinkage and creep of normal strength concrete[J]. Aci Materials Journal, 2001, 98(2):159-167.
[18]GOEL R, KUMAR R, PAUL D, et al. Comparative study of various creep and shrinkage prediction models for concrete[J]. Journal of Materials in Civil Engineering, 2007, 19(3):

249-260.
[19]LI Hua,LIU Jiaping,WANG Yujiang,et al. Deformation and cracking modeling for early-age sidewall concrete based on the multi-field coupling mechanism[J].Construction &

Building Materials, 2015, 88(30):84-93.

相似文献/References:

[1]吴 曦,汪梦甫.竖向荷载作用下预制叠合剪力墙收缩徐变效应研究[J].西安建筑科技大学学报(自然科学版),2023,55(01):118.[doi:10.15986/j.1006-7930.2023.01.015 ]
 WU Xi,WANG Mengfu.Investigation of shrinkage and creep effect of precast superimposed shear wall under axial load[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(01):118.[doi:10.15986/j.1006-7930.2023.01.015 ]

备注/Memo

备注/Memo:
收稿日期:2020-08-13 修改稿日期:2021-01-12
基金项目:国家自然科学基金资助项目(51578225)
第一作者:吴曦(1987-),男,博士研究生,主要从事结构工程抗震方面的研究.E-mail:wuxi_ce@163.com
通讯作者:汪梦甫(1965-),男,博士,教授,主要从事结构工程抗震方面的研究.E-mail:wangmengfu@126.com
更新日期/Last Update: 2021-02-28