[1]陈 兵,余 亮,王章轩,等.385 m超大型长江大跨越输电塔线体系抗震性能分析[J].西安建筑科技大学学报(自然科学版),2022,54(04):533-542.[doi:10.15986/j.1006-7930.2022.04.008]
 CHEN Bing,YU Liang,WANG Zhangxuan,et al.Research on seismic performance of 385 m long-span transmission tower-line system crossing the Yangtze River[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2022,54(04):533-542.[doi:10.15986/j.1006-7930.2022.04.008]
点击复制

385 m超大型长江大跨越输电塔线体系抗震性能分析()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
54
期数:
2022年04期
页码:
533-542
栏目:
出版日期:
2022-08-28

文章信息/Info

Title:
Research on seismic performance of 385 m long-span transmission tower-line system crossing the Yangtze River
文章编号:
1006-7930(2022)04-0533-10
作者:
陈 兵1余 亮2王章轩1黄士君1舒赣平3罗柯镕3宁帅朋2
(1.国网江苏省电力有限公司建设分公司,江苏 南京 210011; 2.中国能源建设集团江苏省电力设计院有限公司 江苏 南京 211102; 3.东南大学 土木工程学院,江苏 南京 211189)
Author(s):
CHEN Bing1 YU Liang2 WANG Zhangxuan1 HUANG Shijun1 SHU Ganping3 LUO Kerong3 NI Shuaipeng2
(1.State Grid Jiangsu Electric Power Company Construction Branch, Nanjing 210011, China; 2.Jiangsu Power Design Institute Co., Ltd. of CEEC, Nanjing 211102, China; 3.School of Civil Engineering, Southeast University, Nanjing 211189, China)
关键词:
大跨越 塔线体系 动力特性 抗震性能
Keywords:
long-span crossing tower-line system dynamic characteristics seismic performance
分类号:
TU398.9; TU311.41
DOI:
10.15986/j.1006-7930.2022.04.008
文献标志码:
A
摘要:
以在建的385 m超大型长江大跨越工程为例,基于SAP2000建立了单塔和塔线体系的有限元模型,通过模态分析、静力弹性分析、静力弹塑性分析、动力时程分析分别研究了单塔和塔线耦合体系的抗震性能.研究结果表明:塔线体系跨越塔自振频率小于单塔; 跨越塔主材混凝土的灌注高度对结构自振频率、应力比及杆件最不利位置都有影响; 地震作用下斜材应力比较大且较早出现塑性铰,是抗震设计中的薄弱位置; 一致激励地震作用下,塔线体系位移普遍大于单塔,加速度响应则小于单塔结构,轴力最大增幅在11%左右; 非一致激励地震作用下,不同视波速对结构响应有较大影响,应以予考虑.
Abstract:
Taking the 385 m super long-span transmission project crossing the Yangtze River under construction as an example, the finite element models of single tower and tower-line system are established based on SAP2000, and the seismic performance of single tower and tower-line coupled system is studied through modal analysis, static elastic analysis, static elastoplastic analysis and dynamic time analysis. The research results show that the natural vibration frequency of crossing tower in transmission tower line system is less than that of single tower. The filling height of the concrete has an effect on the self-vibration frequency, stress ratio and the location of the most unfavorable section of the structure. The stress ratio of the slope bar is relatively large and the plastic hinge appears earlier under the action of earthquake, which is the weak position in the seismic design. Under consistent excitation, the displacement of the tower-line system is generally larger than that of the single tower, the acceleration response is smaller than that of the single tower structure and the maximum increase of the axial force is 11%. Under non-uniform excitation, different apparent wave velocities also have a large impact on the structural response, which should be considered.

参考文献/References:

[1]郑通彦,郑毅.2013年中国大陆地震灾害损失述评[J].自然灾害学报,2015,24(1):239-246.
ZHENG Tongyan, ZHENG Yi. Review of earthquake damage losses in Chinese mainland in 2013[J]. Journal of Natural Disasters,2015,24(1):239-246.
[2]SUN J M, LI J Q, YANG F G. Seismic performance analysis of tower lines system under multiple support excitation[J]. Advanced Materials Research, 2013, 732-733:1085-1089.
[3]PARK H S, CHOI B H, KIM J J, et al. Seismic performance evaluation of high voltage transmission towers in South Korea[J]. Ksce Journal of Civil Engineering, 2016, 20(6):2499-2505.
[4]TIAN L, MA R S, QIU C, et al. Influence of multi-component ground motions on seismic responses of long-span transmission tower-line syste-m:An experimental study[J]. Earthquakes and Structures, 2018,15(6):583-593.
[5]TIAN L, FU Z Y, LIU Y P, et al. Experimental and numerical study on the collapse failure of long-span transmission tower-line systems subjected to extremely severe earthquakes[J]. Earthquakes and Structures, 2019,16(5):513-522.
[6]TIAN L, PAN H Y,MA R S, et al. Seismic failure analysis and safety assessment of an extremely long-span transmission tower-line system[J].Structural Engineering & Mechanics, 2019, 71(3):305-315.
[7]ALBAYRAK U, MORSHID L A M. Evaluation of Seismic Performance of Steel Lattice Transmission Towers[J]. Civil Engineering Journal, 2020, 6(10): 2024-2044.
[8]李宏男,石文龙,贾连光.考虑导线影响的输电塔侧向简化抗震计算方法[J].振动工程学报,2003(2):101-105.
LI Hongnan, SHI Wenlong, JIA Lianguang. Simplified a seicmic calculation method considering effects of lines on transmission tower[J].Journal vibration Engineering,2003(2):101-105.
[9]沈国辉,孙炳楠,何运祥等.大跨越输电塔线体系的地震响应研究[J].工程力学,2008(11):212-217.
SHENG Guohui, SUN Bingnan, HE Yunxiang et al. Sesimic response of long-sapn tranmission tower-line system[J]. Engineering Mechanics,2008(11):212-217.
[10]熊铁华,梁枢果,邹良浩,等.大跨越钢管混凝土输电塔线体系的地震响应分析[J].土木工程学报, 2010, 43(12): 7-12.
XIONG Tiehua, LIANG Shuguo, ZHOU Lianghao et al. Seismiv responses Of a long-span concrete filled steel-tube transmission tower-line system.[J].China Civil Engineering Journal,2010,43(12):7-12.
[11]田利,李宏男.多维多点地震动激励下折线型输电塔线体系反应分析[J].土木工程学报,2012, 45(S1): 131-135.
TIAN Li, LI Hongnan. Seismic response of fold linear type transmission tower-line system under multi-component multi-support excitations[J].China Civil Engineering Journal,2012,45(S1):131-135.
[12]刘俊才,田利,张睿,等.远场地震作用下输电塔-线体系最不利输入方向预测研究[J].工程力学,2020,37(S1):97-103.
LIU Juncai, TIAN Li, ZHANG Rui et al. Study on the prediction of the most adverse input direction of transmission tower -line system under far-field seismic ground motions[J]. Engineering Mechanics,2020, 37(S1): 97-103.
[13]袁光英,潘海洋,马瑞升,等.考虑不同地震输入方向的输电塔-线体系连续性倒塌研究[J].地震工程学报,2020,42(4):840-846.
YUAN Guangying,Pan Haiyang,MA Ruisheng et al.Study of progressive collapse of transmission tower-line system considering different inci-dent angles of earthquakes waves[J].China Earthquake Engineering Journal,2020,42(4):840-846.
[14]陈龙强,张德凯,邓洪洲.大跨越输电塔线体系地震时程响应研究[J].特种结构,2020,37(5):23-28.
CHEN Longqiang, ZHANG Deka, DENG Hongzhou. Research on seismic time-history response of long-span transmission tower-line system[J]. Special Structures,2020,37(5):23-28.
[15]杨风利, 陈兵, 许志勇,等.500 kV长江大跨越输电塔风振系数研究[J/OL].中国电机工程学报:1-15[2022-02-14].
YANG Fengli,CHEN Bin,XU Zhiyong et al.Study on Wind-induced Vibration Coefficients of the Transmission Tower in a 500 kV Long span line cossing the Yangtze River.[J/OL]. Proceedings of the CSEE:1-15[2022-02-14].
[16]中华人民共和国住房和城乡建设部.电力设施抗震设计规范:GB 50260—2013[S]. 北京: 中国标准出版社,2013.
Minstry of Housing and Urban-Rural Development of the People's Repbic of China.Code for seismic design of electrical installations:GB-50260—2013[S]. Beijing: Standards Press of China,2013.
[17]中华人民共和国住房和城乡建设部.建筑抗震设计规范:GB50011—2010[S]. 北京:中国建筑工业出版社, 2016.
Minstry of Housing and Urban-Rural Development of the People's Repbic of China.Code for seismic design of bulidings:GB50011—2010[S]. Beijing: China Architecture & Building Press,2010.
[18]北京金土木软件技术有限公司.Pushover分析在建筑工程抗震设计中的应用[M].北京, 中国建筑工业出版社, 2009.
Civil King Information Technology Co., Ltd. Application of pushover ana-lysis in seismic design of building engineering[M]. Beijing: China Architecture & Building Press,2009
[19]杨付刚,孙建梅,胡启平.多点输入下大跨越输电塔结构抗震性能时程分析[J].电力建设,2010,31(4):1-4.
YANG Fugang, SUN Jianmei, HU Qipin. Seismic behaviour analysis of longCrossing transmission tower under multiple support excitation[J]. Electric Power Construction,2010,31(4):1-4.

相似文献/References:

[1]袁 俊,王虎长,胡建民,等.1000kV 大跨越输电线路钢管塔风振响应及振动控制研究[J].西安建筑科技大学学报(自然科学版),2014,46(03):360.[doi:10.15986/j.1006-7930.2014.03.010]
 YUAN Jun,WANG Huchang,HU Jianmin,et al.Wind-induced dynamic response and vibration control of steel tubular tower in the 1000 kV large span crossing transmission line[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2014,46(04):360.[doi:10.15986/j.1006-7930.2014.03.010]

备注/Memo

备注/Memo:
收稿日期:2022-03-02修改稿日期:2022-08-22
基金项目:国家电网有限公司科技项目资助(SGJSJSOOXMJS2000259)
第一作者:陈 兵(1969—),男,硕士,高级工程师,主要从事送变电土建设计研究.E-mail:947820126@qq.com
更新日期/Last Update: 2022-08-28