[1]吴 晓.用Kantorovich及Galerkin联合法研究双模量板的弯曲[J].西安建筑科技大学学报:自然科学版,2012,44(04):457-462.[doi:10.15986/j.1006-7930.2012.04.001]
 WU Xiao.Kantorovich and Galerkin solution to the bending of bimodulous plate[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2012,44(04):457-462.[doi:10.15986/j.1006-7930.2012.04.001]
点击复制

用Kantorovich及Galerkin联合法研究双模量板的弯曲()
分享到:

西安建筑科技大学学报:自然科学版[ISSN:1006-7930/CN:61-1295/TU]

卷:
44
期数:
2012年04期
页码:
457-462
栏目:
出版日期:
2012-08-31

文章信息/Info

Title:
Kantorovich and Galerkin solution to the bending of bimodulous plate
文章编号:
1006-7930(2012)04-0457-06
作者:
吴 晓
(湖南文理学院土木建筑工程学院,湖南 常德 415000)
Author(s):
WU Xiao
(College of Architecture & Civil Engineering, Hunan University of Arts and Science, Hunan Changde 415000, China)
关键词:
KantorovichGalerkin双模量弯曲
Keywords:
kantorovich galerkin bimodulous plate bending
分类号:
O343.7
DOI:
10.15986/j.1006-7930.2012.04.001
文献标志码:
A
摘要:
双模量矩形板在外载荷作用下,会形成各向同性的拉伸区和压缩区,因此可把双模量矩形板看成两种各向同性材料组成的层合板,采用弹性力学理论建立了双模量矩形板在外载荷作用下的静力平衡方程,利用静力平衡方程确定了双模量矩形板的中性面位置.在此基础上,采用Kantorovich及Galerkin联合法研究了双模量矩形板的弯曲问题.把该方法计算结果与有限元计算结果进行了比较分析,验证了此方法计算精度比较高.算例分析表明,当双模量矩形板材料的拉压弹性模量相差较大时,其弯曲计算不宜采用相同弹性模量经典薄板理论,而应该采用双模量弹性理论
Abstract:
Bimodulous rectangular plate could form isotropic compression and tensile area under uniform load. Bimodulous rectangular plate was regarded as laminated plate composed of two kind of tropic material. Static equilibrium equation of bimodulous plate under uniform load was established by using elastic mechanics theory. The location of neutral plane in bimodulous rectangular plate was determined by the utilization of static equilibrium equation. Then the bending deformation of bimodulous rectangular plate under uniform load was studied with Kantorovich and Galerkin variational method. And the calculation results were compared with that obtained by finite element, and it shows that Kantorovich and Galerkin variational method is reliable. The main conclusions are as follows: the deflection calculation of bimodulous rectangular plate which has larger difference between tensile elastic modulus and compressive elastic modulus may as well not apply classical plate-shell theory with the same elastic modulus, and should use bimodulous elastic theory.

参考文献/References:

[1] MEDRI G.A nonlinear elastic model for isotropic materials with different behavior in tension and compression[J].Transactions of the ASME,1982,26(104):26-28.
[2] BERT C W,Reddy J N,Chao W C,et al.Vibration of thick rectangular plates of bimodulus composite material[J].Journal of Applied.Mechanics,1981,48(2):371-376.
[3] SRINIVASAN R S,RAMACHANDRA L S.Axisymmetric nonlinear dynamic response of bimodulus annular plates[J].Journal of Vibration and Acoustics,1990,112(2):202-205.
[4] 阿巴尔楚米扬.不同模量弹性理论[M].邬瑞锋,张允真译.北京:中国铁道出版社,1986.11-22.
AMBARTSUMYAN S A.Elasticity theory of different modulus[M].WU Rui-Feng,ZHANG Yun-Zhen[Translated].Beijing:China Railway Press,1986.11-22.
[5] 李战莉,黄再兴.双模量泡沫材料等效弹性模量的细观力学估算方法[J].南京航空航天大学学报,2006,38(4):464-468.
LI Zhan-li,HUANG Zai-xing.Meso-mechanical method for estimating equivalent elastic modulus of foam-solid with double-modulus[J].Journal of Nanjing University of Aeronautics & Astronautics,2006,38(4):464-468.
[6] 曾纪杰.对中柔度压杆的双模量理论的修正[J].机械强度,2006,28(3):462-464.
ZENG Ji-Jie.Revision of the formula with bimodulusim intermediate column[J].Journal of Mechanical Strength,2006,28(3):462-464.
[7] 蔡来生,俞焕然.拉压模量不同弹性物质的本构[J].西安科技大学学报,2009,29(1):17-21.
CAI Lai-sheng,YU Huan-ran.Constitutive relation of elastic materials with different elastic moduli in tension and compression[J].Journal of Xi′an University of Science and Technology,2009,29(1):17-21.
[8] 罗战友,夏建中,龚晓南.不同拉压模量及软化特性材料的柱形孔扩张问题的统一解[J].工程力学,2008,25(9):79-84.
LUO Zhan-you,XIA Jian-zhong,GONG Xiao-nan.Unified solution for expansion of cylindrical cavity in strain-softening materials with different elastic moduli in tension and compression[J],Engineering Mechanics,2008,25(9):79-84.
[9] 吴 莹,赵永刚,李世荣.拉压弹性模量不等材料杆的纯弯曲及偏心压缩[J].甘肃工业大学学报,2001,21(1):101-105.
WU Ying,ZHAO Yong-gang,LI Shi-rong.Pure bend and excentrical compression of rod made of material with nonidentical elastic modulus of tension and compression[J].Journal of Gansu University of Technology,2001,21(1):101-105.
[10] 周怡之.双模量Winkler地基简支长矩形板剪切屈曲[J].上海工业大学学报,1993,14(6):478-484.
ZHOU Yi-zhi.Shear Stability of Long Rectangular plates on Bi-Moduli Elastic Foundations[J].Journal of Shanghai University of Technology,1993,14(6):478-484.
[11] 王子昆.拉压不同模量圆柱薄壳在均匀轴压下的对称失稳[J].西安交通大学学报,1989,23(6):94-100.
WANG Zi-kun.Symmetrical buckl1ng of clrcular cylindrical thin shell with different elastic moduli intension and compression under a well-distributed axial load[J].Journal of Xi′an Jiaotong University,1989,23(6):94-100.

备注/Memo

备注/Memo:
收稿日期:2011-03-11 修改稿日期:2012-07-03
基金项目:湖南省“十二五”重点建设学科(机械设计及理论)和湖南省教育厅基金资助项目(11A081)
作者简介:吴晓(1965-),男,湖南常德人,教授,主要从事结构振动理论研究
更新日期/Last Update: 2015-09-01