[1]吴耀鹏,白国良.直接空冷体系挡风墙体型系数研究[J].西安建筑科技大学学报:自然科学版,2014,46(06):805-809.[doi:10.15986/j.1006-7930.2014.06.007]
 WU Yaopeng,BAI Guoliang.Study on the shape factor of wind-break wall of direct air-cooled system[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2014,46(06):805-809.[doi:10.15986/j.1006-7930.2014.06.007]
点击复制

直接空冷体系挡风墙体型系数研究()
分享到:

西安建筑科技大学学报:自然科学版[ISSN:1006-7930/CN:61-1295/TU]

卷:
46
期数:
2014年06期
页码:
805-809
栏目:
出版日期:
2014-12-31

文章信息/Info

Title:
Study on the shape factor of wind-break wall of direct air-cooled system
文章编号:
1006-7930(2014)06-0805-05
作者:
吴耀鹏白国良
(西安建筑科技大学土木工程学院,陕西 西安 710055)
Author(s):
WU Yaopeng BAI Guoliang
(School of Civil Engineering, Xi’an Univ. of Arch. & Tech., Xi’an 710055, China)
关键词:
直接空冷体系体型系数挡风墙数值模拟
Keywords:
direct air-cooled system shape factor wind-break wall numerical simulation
分类号:
TU398.9
DOI:
10.15986/j.1006-7930.2014.06.007
文献标志码:
A
摘要:
空冷凝汽器是我国大型火力发电厂采用的新型冷却水装置.以国内某大型火电厂直接空冷体系为原形,应用Fluent 软件建立数值模型,研究并确定挡风墙的体型系数,并将数值结果与试验结果进行对比分析.结果表明,数值结果与试验结果较接近,变化趋势相同,基本满足工程要求.另外,研究表明设置挡风墙是直接空冷体系有效的防风措施,且挡风墙越高散热越有利.研究结果可以为直接空冷体系的抗风设计提供依据和参考.
Abstract:
Air-cooled condenser is a new water-cooled device adopted by great fossil fuel power plant in China. Based on a direct air-cooled system prototype of domestic great fossil fuel power plant, the numerical model was set up using FLUENT software. The shape factors of the wind-break wall of direct air-cooled system were obtained, and the results of numerical simulation and wind tunnel test were compared. The results showed that the shape factors were approximately the same from two kinds of methods, which basically satisfied engineering requirement. In addition, this study showed that wind-break wall was an effective anti-wind measure and the higher wind-break wall was more beneficial to heat dissipation. The results can provide evidences and references for the wind-resistant design of direct air-cooled system.

参考文献/References:

[1] BREDELL J R, KRO.GER D G, THIART G D. Numerical investigation of fan performance in a forced draft air-cooled steam condenser[J]. Applied Thermal Engineering, 2006, 26(8/9): 846-852.

[2] YANG L J, DU X Z, YANG Y P. Wind effect on the thermo-flow performances and its decay characteristics for air-cooled condensers in a power plant[J]. International Journal of Thermal Sciences, 2012, 53: 175-187.

[3] 白国良, 赵更歧, 赵春莲, 等. 单跨空冷支架结构挡风墙阵风系数风洞试验研究[J]. 西安建筑科技大学学报: 自然科学版, 2009, 41(1): 1-5.

BAI Guoliang, ZHAO Gengqi, ZHAO Chunlian, et al. Wind tunnel test for gustiness factor of wind-bread wall of the single-span air-cooled condenser structure system[J]. Journal of Xi’an University of Architecture & Technology: Natural Science Edition, 2009, 41(1): 1-5.

[4] 赵更歧, 白国良, 李晓文. 三跨空冷支架结构挡风墙阵风系数风洞试验研究[J]. 工业建筑, 2009, 39(3): 39-42.

ZHAO Gengqi, BAI Guoliang, LI Xiaowen. Wind tunnel test for gust factor of wind-break wall of three-span air-cooled condenser structure system[J]. Industrial Construction, 2009, 39(3): 39-42.

[5] 刘林, 白国良, 李晓文, 等. 空冷支架结构挡风墙风压分布试验研究[J]. 工业建筑, 2009, 39(8): 46-51.

LIU Lin, BAI Guoliang, LI Xiaowen, et al. Test study on wind pressure distribution on wind-break wall of support structure system of air cooled condenser[J]. Industrial Construction, 2009, 39(8): 46-51.

[6] CORONEO M, MONTANTE G, PAGLIANTI A, et al. CFD prediction of fluid flow and mixing in stirred tanks: Numerical issues about the RANS simulations[J]. Computers and Chemical Engineering, 2011, 35(10): 1959-1968.

[7] HERZOGA N, SCHREIBER M, EGBERS C, et al. A comparative study of different CFD-codes for numerical simulation of gas-solid fluidized bed hydrodynamics[J]. Computers and Chemical Engineering, 2012, 39: 41-46.

[8] 祝志文. 高Re 数圆柱绕流二维RANS 模拟适用性分析[J]. 振动与冲击, 2013, 32(7): 98-101.

ZHU Zhiwen. Feasibility analysis of 2-D RANS simulations for of circular cylinders aerodynamics at high Re number[J]. Journal of Vibration and Shock, 2013, 32(7): 98-101.

[9] KULYAKHTIN A, SHIPILOVA O, MUSKULUS M. Numerical simulation of droplet impingement and flow around a cylinder using RANS and LES models[J]. Journal of Fluids and Structures, 2014, 48: 280-294.

[10] 周兰欣, 李建波, 李卫华, 等. 直接空冷机组凝汽器加装下挡风墙的数值模拟[J]. 动力工程, 2008, 28(5): 743-747.

ZHOU Lanxin, LI Jianbo, LI Weihua, et al. Numerical simulation of direct air cooling units condenser added lower windbreak[J]. Journal of Power Engineering, 2008, 28(5): 743-747.

[11] YANG L J, DU X Z, YANG Y P. Influences of wind-break wall configurations upon flow and heat transfer characteristics of air-cooled condensers in a power plant[J]. International Journal of Thermal Sciences, 2011, 50(10): 2050-2061.

[12] 陈梅倩, 王玉叶, 贾鹏程, 等. 挡风墙对直接空冷风机群流体动力学特性的影响[J]. 北京交通大学学报, 2012, 36(1): 98-103.

CHEN Meiqian, WANG Yuye, JIA Pengcheng, et al. Influences of the wind break wall structures upon fluid dynamics of axial flow fans in direct air-cooled system[J]. Journal of Beijing Jiaotong University, 2012, 36(1): 98-103.

相似文献/References:

[1]聂少锋,孙玉金,毛 路,等.弧形内凹大跨屋盖结构风荷载特性的风洞试验与数值模拟[J].西安建筑科技大学学报:自然科学版,2016,48(05):669.[doi:10.15986/j.1006-7930.2016.05.009]
 NIE Shaofeng,SUN Yujin,MAO Lu,et al.Wind tunnel test and numerical simulation on wind load characteristics of large-span roof with concave surface[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2016,48(06):669.[doi:10.15986/j.1006-7930.2016.05.009]
[2]聂少锋,周绪红,陶 莹,等.复杂体型低矮房屋风荷载特性风洞试验研究[J].西安建筑科技大学学报:自然科学版,2016,48(06):832.[doi:10.15986/j.1006-7930.2016.06.010]
 NIE Shaofeng,ZHOU Xuhong,TAO Ying,et al.Wind tunnel test on wind load characteristics of low-rise buildings with complex shape[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2016,48(06):832.[doi:10.15986/j.1006-7930.2016.06.010]

备注/Memo

备注/Memo:
收稿日期:2014-06-24 修改稿日期:2014-11-25
基金项目:国家自然科学基金项目(51108371);西安市科技计划项目(CXY1432④)
作者简介:吴耀鹏(1979-),男,博士,副教授,主要从事结构抗风研究.E-mail: wyp@xauat.edu.cn
更新日期/Last Update: 2015-09-01