[1]华 军,武霞霞,李东波,等.基于神经网络的石墨烯弹性参量识别方法研究[J].西安建筑科技大学学报:自然版,2015,47(05):760-765.[doi:DOI:10.15986/j.1006-7930.2015.05.026]
 HUA Jun,WU Xiaxia,LI Dongbo,et al.Idenfication of elastic parameters method for graphene based on neural network[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2015,47(05):760-765.[doi:DOI:10.15986/j.1006-7930.2015.05.026]
点击复制

基于神经网络的石墨烯弹性参量识别方法研究()
分享到:

西安建筑科技大学学报:自然版[ISSN:1006-7930/CN:61-1295/TU]

卷:
47
期数:
2015年05期
页码:
760-765
栏目:
出版日期:
2015-10-29

文章信息/Info

Title:
Idenfication of elastic parameters method for graphene based on neural network
文章编号:
1116-7930(2015)05-0760-05
作者:
华 军武霞霞李东波张宇辉
(西安建筑科技大学理学院,陕西 西安 710055)
Author(s):
HUA Jun WU Xiaxia LI Dongbo ZHANG Yuhui
(School of Science,J.Xi’an Univ . of Arch. & Tech., Xi ’an 710055, China)
关键词:
石墨烯弹性参量人工神经网络BP模型正交试验设计
Keywords:
graphene elastic parameter artificial neural networks BP model orthogonal experiment design
分类号:
TB12;TP183
DOI:
DOI:10.15986/j.1006-7930.2015.05.026
文献标志码:
A
摘要:
石墨烯的弹性参量是准确研究其力学性能的前提和基础.将神经网络的BP算法应用于石墨烯弹性模量和剪切弹性模量的预测,考虑石墨烯薄膜的长度、宽度、长宽比、手性、层数和温度6个影响因素,通过选取84组训练和检验样本,建立了石墨烯弹性参量的BP神经网络预测模型.将预测结果进行误差分析,其平均相对误差均小于3 %,从而验证了该方法的适用性和可行性.将训练好的网络模型进行扩展计算,基于L25(56)正交表试验理论分析了石墨烯弹性参量对各影响因素的敏感性.为同类材料性能的预测提供了参考.
Abstract:
Elastic parameters of graphene is the premise and foundation for the research of its material mechanics performances. The BP neural network is used to predict the elastic modulus and shear modulus of graphe ne. Considering the length, width, aspect ratio, chiral, layers and temperature of graphene as the main influence factors and choosing 84 groups of data as training and forecasting sample, BP neural network model is established . The errors of forecasting results are analyzed, and the average relative errors are less than 3 %, which proves the applicability and feasibility of this method . Based on the calculation results, the sensitivity of influence factor to the g raphene elastic parameter is analyzed by using L25(56) orthogonal table, which may provide a reference to the performance prediction of similar material .

参考文献/References:

参考文献 References
[1] NOVSELOW K. S., GEIM A. K., MOROZOW S. V., et
al. Electric field effect in atomically thin carbon films[J].
Science, 2004, (306):666-669.
[2] CORDELIA Sealy. Graphene goes from strength to
strength[J]. Materials Today, 2008, 11(9):12-18.
[3] LI Peiyuan, XIE Zhijiang, LI Xinxia. Research into fault
diagnosis of large rotating machinery on BP network and
the data source of network[J]. Journal of Southwest
University for Nationalities Natural Science Edition,
2004, 30(3):386-390.
[4] SHOKRI S H M, SHOKRI E H, ROHAM Raffiee.
Prediction of Young’s modulus of graphene sheets and
carbon nanotubes using nanoscale continuum mechanics
approach[J]. Materials and Design, 2010, 31(2):790-795.
[5] 余晓红.BP 神经网络的MATLAB 编程实现及讨论[J].
浙江交通职业技术学院学报, 2007, 8(4):45-48.
YU Xiaohong. Matlab implementation and discussion of
BP neural network[J]. Journal of Zhejiang Institute of
Communications, 2007, 8(4):45-48.
[6] Venkatesh. Predicting the mechanical characteristics of
hydrogen functionalied graphene sheets using artificial
netural network approach[J]. Journal Of Nanostructure in
Chemistry, 2013, (3):83-87.
[7] 尹海莲,胡自力. 基于BP 神经网络的复合材料性能
预测[J].南京航空航天大学学报, 2006, 38(2):234-238.
YI Hailian, HU Zili. Prediction of composite material
properties basedon bp algorithm of artificial neutral
etwork[J].Journal of Nanjing University of Aeronautics
& Astronautics, 2006, 38(2):234-238.
[8] 白光辉,孟鹤松,杜善文,等.基于神经网络炭/炭复
合材料烧蚀性能预测[J].复合材料学报, 2007, 26(4):
83-88.
BAI Guanghui, MENG HeSong, DU Shanwen, et al.
Prediction on the ablative performance of carbon/carbon
composites based on artificial neutral network[J]. Acta
Materie Compositae Sinica, 2007, 26(4):83-88.
[9] 李东波.基于ANN 的碳纤维楠竹锚杆锚固力预测研究
[J].力学与实践, 2013, 35(2):40-45.
LI Dongbo. Anchorage force prediction for the
cfrp-bamboo bolt based on artificial neural network[J].
Mechanics in Engineering, 2013, 35(2):40-45.
[10] 王伟.人工神经网络入门与应用[M].北京:北京航空航
天大学,1995.
WANG wei. The introduction and application of artificial
neural network[M]. Beijing: Beijing University of Aeronautics
and Astronautics Press, 1995.
[11] Tho K. K., SWADDIWUDHIPONG S, LIU Z S, et al.
Artificial neural network model for material characterization
by indentation[J]. Modelling and Simul. Mater.
Sci. Eng, 2004, 12(5):1055-1062.
[12] 朱熹育,王社良,朱军强.基于Sugeno 型模糊神经网
络的空间杆系结构的压电驱动器主动控制[J].工程力
学, 2013, 30(8):272-277.
ZHU Xiyu, WANG Sheliang, ZHU Junqiang. Sugeno
type fuzzy neural network active cortrol of space frame
structure based on piezoelectric actuator[J]. Engineering
Mechanics, 2013, 30(8):272-277.
[13] 沈乐.石墨烯薄膜的等效弹性参数和力学行为研究[D].
上海:上海交通大学大学,2010.
SHEN Le. Effective elastic properties and mechanical
behavior of single layer graphene sheets[D].Shanghai:
Shanghai Jiao Tong University, 2010.
[14] XU Yumou, SHEN Huishen, ZHANG Chenli. Nonlocal
plate model for nonlinear bending of bilayer graphene
sheets subjected to transverse loads in thermal
environments[J]. Composite Structures, 2013, 98(9):
294-302.
[15] 韩同伟,贺同飞,王健,等.石墨烯拉伸力学性能温度
相关性的数值模拟[J].同济大学学报, 2009, 37(12):
1638-1641.
HAN Tongwei, HE Pengfei, WANG Jian, et al.
Numerical simulation of temperature dependence of
tensile mechanical properties for single graphene sheet[J].
Journal of Tongji University, 2009, 37(12):1638-1641.
[16] 韩同伟,贺鹏飞,王健,等.单层石墨烯薄膜拉伸变
形的分子动力学模拟[J]. 新型炭材料, 2010,
25(4):261-266.
HAN Tongwei, HE Pengfei, WANG Jian,et al. Molecular
dynamics simulation of a single graphene sheet under
tension[J]. New Carbon Materials, 2010, 25(4):261-266.

相似文献/References:

[1]李东波,赵 冬,华 军.碳原子辐照损伤后石墨烯拉伸力学性能的温度相关性研究[J].西安建筑科技大学学报:自然版,2016,48(03):454.[doi:10.15986/j.1006-7930.2016.03.025]
 LI Dongbo,ZHAO Dong,HUA Jun.Research on correlation of tensile mechanical properties of irradiated graphene by C atomss with temperature[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2016,48(05):454.[doi:10.15986/j.1006-7930.2016.03.025]
[2]华军,陈垣欣,段志荣,等.含裂纹石墨烯辐照修复研究[J].西安建筑科技大学学报:自然版,2018,50(01):141.[doi:10.15986/j.1006-7930.2018.01.022]
 HUA Jun,CHEN Yuanxin,DUAN Zhirong,et al.Repairing of the graphene with a crack by carbon ion irradiation[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2018,50(05):141.[doi:10.15986/j.1006-7930.2018.01.022]

备注/Memo

备注/Memo:
收稿日期:2014-03-11 修改稿日期:2015-10-13
基金项目:陕西省工业科技攻关项目 (2015G141),西安建筑科技大学校人才科技基金资助 (DB12062)
作者简介:华军(1971-),男,教授,博士,主要从事微纳米力学的研究.E-mail:Huajun211@sina.com.
更新日期/Last Update: 2015-12-14