[1]赵 平,吴 昊,李萍萍,等. 基于差分粒子群算法的装配式住宅项目进度优化研究[J].西安建筑科技大学学报:自然版,2016,48(02):178-182.[doi:10.15986/j.1006-7930.2016.02.005]
 ZHAO Ping,WU Hao,LI Pingping,et al.Hybrid particle swarm algorithm based on differential evolution for the research of prefabricated housing project schedule optimization[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2016,48(02):178-182.[doi:10.15986/j.1006-7930.2016.02.005]
点击复制

 基于差分粒子群算法的装配式住宅项目进度优化研究()
分享到:

西安建筑科技大学学报:自然版[ISSN:1006-7930/CN:61-1295/TU]

卷:
48
期数:
2016年02期
页码:
178-182
栏目:
出版日期:
2016-04-28

文章信息/Info

Title:
Hybrid particle swarm algorithm based on differential evolution for the research of prefabricated housing project schedule optimization
文章编号:
1006-7930(2016)02-0178-05
作者:
赵 平吴 昊李萍萍乔媛媛
西安建筑科技大学土木工程学院,陕西 西安 710055
Author(s):
ZHAO Ping WU Hao LI Pingping QIAO Yuanyuan
School of Civil Engineering, Xi’an Univ. of Arch. & Tech., Xi’an 710055, China
关键词:
装配式住宅差分算法粒子群算法进度优化
Keywords:
Prefabricated housing differential evolution particle swarm schedule optimization
分类号:
TU722
DOI:
10.15986/j.1006-7930.2016.02.005
文献标志码:
A
摘要:
为了有效的解决装配式住宅项目的进度优化问题,通过探讨装配式住宅项目调度问题的约束条件,提出了基于差分进化的改进粒子群算法(DEPSO),建立了以项目工期最优为目标的进度优化模型.通过在差分算法和粒子群算法之间建立信息互融机制,克服了差分算法和粒子群算法单独使用易产生局部最优和精度低的缺陷,以达到最优工期的预期目标.通过实例分析,进行了三种算法的比较,证明了DEPSO算法在求解装配式住宅项目进度优化中高效、合理、鲁棒性强,对装配式住宅的推广和发展起到一定的积极作用.
Abstract:
In order to solve the prefabricated housing project schedule optimization problem effectively, through discussing the constraints of prefabricated housing project scheduling problem, based on the particle swarm optimization (DEPSO) of differential evolution , the schedule optimization model is built whose objective is the optimal fabricated project period . The new algorithm established an information exchange mechanism between DE and PSO which greatly overcomes the defects of local optimum and low accuracy when DE or PSO is used alone to achieve the schedule optimization target. Ending with analyzing the case, comparing the three algorithms, the result proves that DEPSO is reasonable and efficient in solving assembled project schedule optimization with a strong robustness which plays a positive role in promotion and development of the prefabricated housing project.

参考文献/References:

[1] KOLIS R, HARTMANN S. Experimental investigation of heuristics for resource-contrained project scheduling: an update[J]. European Journal of Operational Research, 2006, 174(1):23-37.

[2] 李雪, 聂兰顺, 齐文艳. 基于近似动态规划的动态车辆调度算法[J]. 中国机械工程, 2015, 26(5): 682-688.

LI Xue, NIE Lanshun, QI Wenyan.Dynamic vehicle scheduling algorithm based on approximate dynamic programming [J]. China Mechanical Engineering, 2015,269(5): 682-688.

[3] 黄风林,屈端,范峥.数学规划法优化氢网络的应用研究[J].化学工程,2015,43(3):70-73.

HUANG Fenglin,QU Duan,FAN Zheng .Application research on mathematical programming methodology for hydrogen network optimization[J]. Chemical Engineering,2015,43(3):70-73.

[4] 张光明,刘东峰,刘春峰.基于遗传算法的两阶段建筑工程多目标优化[J].西安建筑科技大学学报(自然科学版),2011,43(3):410-416.

ZHANG Guangming, LIU Dongfeng, LIU Chunfeng. Comprehensive optimization for multiple objectives in construction based on GA[J]. J. Xi’an Univ. of Arch. & Tech. (Natural Science Edition), 2011,43(3):410-416.

[5] 王秋平,史荣,张琦.基于改进蚁群算法和网络GIS分析的慢行交通最优路径选择[J].西安建筑科技大学学报(自然科学版),2013,45(5):668-674,687.

WANG Qiuping, SHI Rong, ZHANG Qi. Optimal path selection of slow traffic based on GIS network analysis[J]. J. Xi’an Univ. of Arch. & Tech. (Natural Science Edition), 2013,45(5): 668-674, 687.

[6] 刘海霞,李仁旺,李学.基于遗传模拟退火算法的制造网格资源调度策略[J].计算机工程与应用,2008,44(6):234-237.

LIU Haixia, LI Renwang, LI Xue. Resource scheduling strategy in manufacture grid based on genetic algorithms and simulated anealing[J]. Computer Engineering and Application, 2008,44(6): 234-236.

[7] 甄彤,郭嘉,吴建军.粒子群算法求解粮堆温度模型参数优化问题[J].计算机工程与应用,2012,48(12):206-208.

ZHEN Tong, GUO Jia, WU Jianjun. To solve problems of mathematical model of temperature field for grain based on PSO[J]. Computer Engineering and Applications,2012, 48(12): 206-208.

[8] 刘士新.项目优化调度理论与方法[M].北京:机械工业出版社,2007.

LIU Shixin. Theory and method of project optimization scheduling[M]. Beijing: Mechanical Industry Press, 2007.

[9] KENNEDY J,EBERHARTR C. Particle Swarm Optimization[C]//Proc. IEEE Int. Conf. on Neural Networks, Piscataway: IEEE, 1995: 1942-1948.

[10] SHI Y, EBERHARTR C. A Modified Particle Swarm Optimizer[C]//Proc. IEEE World Congress on Computational Intelligence, Piscataway: IEEE, 1998:69-73.

[11] 池元成,方杰,蔡国飙.基于差分进化和粒子群优化算法的混合优化算法[J]. 计算机工程与计,2009,30(12): 2963- 2965.

CHI Yuancheng, FANG Jie,CAI Guobiao. Hybrid optimization algorithm based on differential evolution and particle swarm optimization[J]. Computer Engineering and Design, 2009,30 (12):2963-2965.

[12] PRICE K. An introduction to differential evolution: new ideas in optimization[M]. Maidenhead: McGraw-Hill,1999:79-1087.

备注/Memo

备注/Memo:
收稿日期:2015-07-22 修改稿日期:2016-04-10
基金项目:陕西省自然科学基础研究基金(2014JM2-5046);国家自然科学基金青年项目(51308441);陕西省科技统筹创新工程计划项目(2015KTCQ03-18,2015KTZDSF03-05-03)
作者简介:赵平(1967-),女,博士,教授,研究领域为建筑工程计算机仿真与优化技术、土木工程施工与管理.E-mail:zhaopshg@xauat.edu.cn
更新日期/Last Update: 2016-05-31