[1]孙建鹏,谭天宇,黄文锋.冲击荷载作用下弹性压杆的动力稳定分析[J].西安建筑科技大学学报(自然科学版),2016,48(04):505-509.[doi:10.15986/j.1006-7930.2016.04. 007]
 SUN Jianpeng,TAN Tianyu,HUANG Wenfeng.Dynamic stability analysis of elastic compressive bar under shock loading[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2016,48(04):505-509.[doi:10.15986/j.1006-7930.2016.04. 007]
点击复制

冲击荷载作用下弹性压杆的动力稳定分析()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
48
期数:
2016年04期
页码:
505-509
栏目:
出版日期:
2016-08-31

文章信息/Info

Title:
Dynamic stability analysis of elastic compressive bar under shock loading
文章编号:
1006-7930(2016)04-0505-05
作者:
孙建鹏1谭天宇1黄文锋2
(1.西安建筑科技大学土木工程学院,陕西 西安 710055; 2.合肥工业大学水利与土木工程学院,安徽 合肥 230009)
Author(s):
SUN Jianpeng1 TAN Tianyu1 HUANG Wenfeng2
(1.School of Civil Engineering, Xian University of Architecture and Technology, Xian 710055, China; 2.School of Civil Engineering, Hefei University of Technology, Hefei 230009, China)
关键词:
精细传递矩阵法受压杆件动力稳定迭代算法位移时程曲线
Keywords:
precise transfer matrix method compressive bar dynamic instability iterative algorithm the displacement time history curve
分类号:
TU311.2
DOI:
10.15986/j.1006-7930.2016.04. 007
文献标志码:
A
摘要:
动力稳定性是细长杆件的一种重要性能,结合精细传递矩阵理论,建立了在轴向冲击荷载作用下受压杆件动力稳定分析的精细传递矩阵式,并对冲击荷载的参数进行了分析,研究其对受压杆件动力稳定性能的影响.算例表明:受压杆件的动力稳定性可以通过结构的位移响应曲线是否存在反规律现象来确定.算例还表明结构的动力稳定性不仅与冲击荷载的幅值有关,还有荷载的振动频率有关;荷载频率与结构自振频率之间的差异影响着受压杆件动力稳定承载力的大小.
Abstract:
Dynamic stability is an important property of slender bars. In this paper, a transfer matrix is developed for dynamic stability analysis of slender bars subjected to axial impact loading based on the theory of precise transfer matrix method, and the parameters of impact loading are analyzed, and the effect on the properties of dynamic stability of compression bar is studied. Examples showed that it can determine whether or not the dynamic instability of compression bar has happened by the displacement response curves there is against the law phenomenon, and the dynamic stability of compression bar is not only associated with the amplitude of shock load, but also with the vibration frequency of the load. The differences between the natural frequency of loading and the vibration frequency of structures have some effects on the size of bearing capacity of dynamic stability of compressive bar

参考文献/References:

References
[1] 刘鸿文.材料力学(Ⅱ)[M].北京:高等教育出版社,1993.
LIU Hongwen. Mechanics of materials(Ⅱ)[M]. Beijing: Higher Education Press,1993.
[2] 李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社,2003.
LI Guohao. Stability and vibration of bridge structure [M]. Beijing: China Railway Press, 2003.
[3] 陈骥.钢结构稳定理论与应用[M].北京:科学技术文献出版社,1994.
CHEN Ji. Stability theory and application of steel structure [M]. Beijing: Science and Technology Literature Press,1994.
[4] 孙建鹏李青宁门式钢框架稳定分析的精细传递矩阵法(自然科学版), 2011, 43(3)?:374-378.
SUN Jianpeng , LI Qingning. Precise transfer matrix method for stability analysis of steel portal frame[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition),2011,43(3)?:374-378.
[5] WELLER T, ABRAMOVICH H, YAFE R. Dynamic buckling of beams and plates subjected to axial impact [J]. Computers and Structures, 1989,32(3/4):835-51.
[6] Ari-Gur J, WELLER T, SINGER J. Experimental and theoretical studies of columns under axial impact [J]. International Journal of Solids and Structures 1982; 18(7):619-641.
[7] LEE H P. Effects of initial curvature on the dynamic stability of a beam with tip mass subjected to axial pulsating loads [J]. International Journal of Solids and Structures, 1995, 32(23):3377-3392.
[8] KENNYA. S, TAHERI .F, PEGGC. N. Experimental investigations on the dynamic plastic buckling of a slender beam subject to axial impact [J]. International Journal of Impact Engineering, 2002,27(1):1-17.
[9] 王安稳.弹性压应力波下直杆动力失稳的机理和判据[J].力学学报,2001,33(6):813-820.
WANG Anwen. Mechanism and criterion for dynamic intability of bars under elastic compression wave[J]. ACTA Mechanica SINICA, 2001,33(6):813-820.
[10] 钟炜辉,郝际平,雷蕾,等.考虑应力波的轴心压杆冲击分岔屈曲研究[J].振动与冲击,2010, 29(10):20l-205.
ZHONG Weihui. HAO Jiping, LEI Lei. Study on shock bifurcation buckling of axial compressive bar considering the stress wave [J].Journal Of Vibration And Shock,2010, 29(10):20l-205.
[11] H. Holzer. Die Berechnung der Drehsenwingungen, Springer, Berlin, Germany, 1921.
[12] A.M.ELLAKANY,K.M.ELAWADLY,B.N. ALHAMAKY, A combined transfer matrix and analogue beam method for free vibration analysis of composite beams[J].Journal of Sound and Vibration. 2004,277( 4/5): 765-781.
[13] 孙建鹏,李青宁.多点地震输入下结构地震反应的频域精细传递矩阵法[J].建筑结构学报,2010,31(2):48-54.
SUN Jianpeng,LI Qingning. Precise frequency domain transfer matrix method for seismic response analysis of structures under multi-support excitations[J].Journal of Building Structures,2010,31(2):48-54.
[14] 孙建鹏,李青宁.求解结构自振频率的精细传递矩阵法[J].世界地震工程,2009,25(2):140-145.
SUN Jianpeng, LI Qingning. Precise transfer matrix method for resolving natural frequencies of structures[J]. World Earthquake Engineering, 2009,25(2):140-145.
[15] WU Jong Shyong, CHANG Bo Hau. Free vibration of axial-loaded multi-step Timoshenko beam carrying arbitrary concentrated elements using continuous-mass transfer matrix method[J]. European Journal of Mechanics A/Solids, 2013,38(3/4):20-37.
[16] CUI Shijie, HAO Hong, CHEONG Hee Kiat. Theoretical study of dynamic elastic buckling of columns subjected to intermediate velocity impact loads[J].International Journal of Mechanical Sciences, 2002,44:687-702.

相似文献/References:

[1]孙建鹏.门式钢框架稳定分析的精细传递矩阵法[J].西安建筑科技大学学报(自然科学版),2011,43(03):374.[doi:DOI :10.15986/j .1006-7930.2011.03.021]
 SUN J ian-peng,L I Qing-ning.Precise transfer matrix method for stability analysis of steeel portal frame[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2011,43(04):374.[doi:DOI :10.15986/j .1006-7930.2011.03.021]

备注/Memo

备注/Memo:
收稿日期:2014-12-03 修改稿日期:2016-08-05
基金项目:安徽高校省级自然科学一般项目基金资助(KJ2013B223)
作者简介:张振龙(1980-),男,博士生,主要从事土木工程建造与管理等方面研究工作.Email: 370331615@qq.com
更新日期/Last Update: 2016-10-30