[1]陈 歆,刘 旭,董淑慧,等.高原低压低湿作用下水泥水化与孔结构发展[J].西安建筑科技大学学报(自然科学版),2021,53(02):202-207.[doi:10.15986/j.1006-7930.2021.02.008]
 CHEN Xin,LIU Xu,DONG Shuhui,et al.Cement hydration and pore structure development in low air pressure and low humidity[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(02):202-207.[doi:10.15986/j.1006-7930.2021.02.008]
点击复制

高原低压低湿作用下水泥水化与孔结构发展()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
53
期数:
2021年02期
页码:
202-207
栏目:
出版日期:
2021-04-28

文章信息/Info

Title:
Cement hydration and pore structure development in low air pressure and low humidity
文章编号:
1006-7930(2021)02-0202-06
作者:
陈 歆刘 旭董淑慧葛 勇
(哈尔滨工业大学 交通科学与工程学院,黑龙江 哈尔滨 150090)
Author(s):
CHEN Xin LIU Xu DONG Shuhui GE Yong
(School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China)
关键词:
混凝土 水泥净浆 水化 孔结构 低气压
Keywords:
concrete cement paste hydration pore structure low air pressure
分类号:
TU528
DOI:
10.15986/j.1006-7930.2021.02.008
文献标志码:
A
摘要:
根据工程实践惯例与高原自然环境特点,模拟了低压低湿耦合作用下的典型养护模式,研究了各养护模式下水泥水化进程与水泥浆体内部孔结构发展特点.水泥水化的进程由硬化浆体中化学结合水的含量表征,通过高温灼烧测得.水泥净浆的孔结构发展通过压汞法和氮吸附法进行分析,得到的孔结构特点同时也是评价水泥水化进程的重要依据.最后以混凝土的抗压强度试验验证上述对水泥净浆在化学与物理层面的分析.结果表明:同样的相对湿度下,低压养护的水泥净浆化学结合水比常压养护的少,凝胶孔发展也不如常压养护的充分,即水化进程有一定程度的滞后.若过早停止保湿养护进入低压低湿环境,28 d时水泥净浆中将残留更多的毛细孔.试验各组混凝土均能达到设计强度等级,但当浸水养护只有7 d,养护气压低至61 kPa且相对湿度低至30%时,强度富余非常有限.
Abstract:
Typical curing modes considering low air pressure and low relative humidity were designed based on normal engineering practice and physico-geographical environment of plateau regions. Cement paste specimens were cured in these designed modes and subsequently experienced a series of tests to investigate the hydration level and pore structure development. The level of cement hydration was characterized by the content of chemically-combined water, which was tested by the loss on ignition. Pore structure development of hardened cement paste was analyzed by both mercury intrusion and nitrogen absorption. The pore structure provided extra basis for cement hydration evaluation. Finally, compressive strength test of concrete was conducted to verify the above chemical and physical analyses on hardened cement paste. Results show that in the same relative humidity, the hydration level of cement paste cured in low air pressure is lower than that in ordinary air pressure, presenting as lower content of chemically-combined water and less gel pores. More capillary pores would remain at 28 d age if moisture retention untimely discontinues to make the cement paste expose to an environment with low air pressure and low humidity. Moreover, although all tested concrete groups satisfy the anticipated strength grade, there is a very limited surplus for concrete cured in 61 kPa & RH 30% after only 7 d water immersion.

参考文献/References:

[1]马新飞. 低压低湿养护对混凝土性能影响的研究[D].哈尔滨: 哈尔滨工业大学, 2016.
MA Xinfei. Effect of low humidity and low atmospheric pressure on the properties of concrete[D].Harbin: Harbin Institute of Technology, 2016.
[2]葛昕. 高原气候条件对混凝土性能及开裂机制影响的研究[D].哈尔滨: 哈尔滨工业大学, 2019.
GE Xin. The research on effect of plateau climatic conditions on concrete performance and cracking mechanism[D].Harbin: Harbin Institute of Technology, 2019.
[3]胡玉兵, 曹瑞普. 高原地区混凝土内外部结构性能的差异性研究[J].硅酸盐通报, 2017, 36(S1): 213-218.
HU Yubing, CAO Ruipu. Differences of internal and external structure properties of concrete in the plateau area[J].Bulletin of the Chinese Ceramic Society, 2017, 36(S1): 213-218.
[4]葛昕, 葛勇, 杜渊博, 等. 高原气候条件下混凝土力学性能的研究[J].混凝土, 2020(3): 1-4,8.
GE Xin, GE Yong, DU Yuanbo, et al. Mechanical properties of concrete under plateau climate condition[J].Concrete, 2020(3): 1-4,8.
[5]GE X, GE Y, LI Q, et al. Effect of low air pressure on the durability of concrete[J].Construction and Building Materials,2018,187: 830-838.
[6]GE X, GE Y, DU Y, et al. Effect of low air pressure on mechanical properties and shrinkage of concrete[J].Magazine of Concrete Research, 2018, 70(18): 919-927.
[7]ZHANG A, YANG W, GE Y, et al. Effect of nanomaterials on the mechanical properties and microstructure of cement mortar under low air pressure curing[J].Construction and Building Materials, 2020, 249: 11878.
[8]纳启财. 高原地区环境及养护条件对混凝土性能的影响[J].混凝土与水泥制品, 2016(1):10-13.
NA Qicai. Effect of environment and curing conditions of plateau regions on concrete properties[J].China Concrete and Cement Products, 2016(1):10-13.
[9]何锐, 王铜, 陈华鑫, 等. 青藏高原气候环境对混凝土强度和抗渗性的影响[J].中国公路学报, 2020, 33(7): 29-41.
HE Rui, WANG Tong, CHEN Huaxin, et al. Impact of Qinghai-Tibet Plateau’s climate on the strength and permeability of concrete[J].China Journal of Highway and Transport, 2020, 33(7): 29-41.
[10]陈华鑫, 王铜, 何锐, 等. 高原复杂气候环境对混凝土气孔结构与力学性能的影响[J].长安大学学报(自然科学版), 2020, 40(2): 30-37.
CHEN Huaxin, WANG Tong, HE Rui, et al. Effects of complex climatic environment on pore structure and mechanical properties of concrete[J].Journal of Chang’an University(Natural Science Edition), 2020, 40(2): 30-37.
[11]MINDESS S, YOUNG J F, DARWIN D. Concrete[M].2nd ed.Upper Saddle River, New Jersey: Pearson Education, Inc., 2003.
[12]吴中伟, 廉慧珍. 高性能混凝土[M].北京: 中国铁道出版社, 1999: 38-43.
WU Zhongwei, LIAN Huizhen. High performance concrete[M].Beijing: China Railway Publishing House Co., Ltd., 1999: 38-43.
[13]吴中伟. 混凝土科学技术近期发展方向的探讨[J].硅酸盐学报, 1979, 7(3): 262-270.
WU Zhongwei. An approach to the recent trends of concrete science and technology[J].Journal of the Chinese Ceramic Society,1979,7(3): 262-270.
[14]陈红伟, 胡玉兵, 张云必. 高原环境下混凝土配合比优化设计研究[J].硅酸盐通报, 2016, 35(8): 2681-2687.
CHEN Hongwei, HU Yubing, ZHANG Yunbi. Mixture optimization design of concrete in the environment of plateau[J].Bulletin of the Chinese Ceramic Society, 2016, 35(8): 2681-2687.
(编辑 桂智刚)

相似文献/References:

[1]丁红岩,梁玉国,高天宝,等.基于可靠度理论的无机胶植筋设计方法[J].西安建筑科技大学学报(自然科学版),2015,47(01):6.[doi:10.15986/j.1006-7930.2015.01.002]
 DING Hongyan,LIANG Yuguo,GAO Tianbao.The design method of inorganic glue bonded rebars based on reliability theory[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2015,47(02):6.[doi:10.15986/j.1006-7930.2015.01.002]
[2]于本田,王起才,周立霞,等.兰新铁路第二双线混凝土矿物掺合料掺量优化试验研究[J].西安建筑科技大学学报(自然科学版),2012,44(03):351.[doi:10.15986/j.1006-7930.2012.03.008]
 YU Ben-tian,WANG Qi-cai,ZHOU Li-xia,et al.Optimization research on the contents of mineral admixture of concrete in the 2nd double line of Lanzhou-Xinjiang Railway[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2012,44(02):351.[doi:10.15986/j.1006-7930.2012.03.008]
[3]马中军,谈志诚,张 铟.混凝土桥梁应变的区间型预警阈值设定[J].西安建筑科技大学学报(自然科学版),2013,45(04):526.[doi:10.15986/j.1006-7930.2013.04.011]
 MA Zhong-jun,TAN Zhi-cheng,ZHANG Yin.Interval strain threshold setting method for early warning of concrete bridge[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2013,45(02):526.[doi:10.15986/j.1006-7930.2013.04.011]
[4]侯 炜,贺拴海,张 岗.防火涂层对高温后混凝土抗压强度的影响[J].西安建筑科技大学学报(自然科学版),2014,46(02):241.[doi:10.15986/j.1006-7930.2004.02.015]
 HOU Wei,HE Shuanhai,ZHANG Gang.Effects of fire protection layer on compressive strength of concreteafter high temperature[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2014,46(02):241.[doi:10.15986/j.1006-7930.2004.02.015]
[5]韦 俊,孟 浩,薛圣广.钢筋不均匀锈蚀引起的混凝土保护层开裂有限元分析[J].西安建筑科技大学学报(自然科学版),2011,43(05):747.[doi:DOI :10.15986/j .1006-7930.2011.05.019]
 WE I J un,MENG Hao,XUE Sheng-guang.FEM analysis on the crack process of concrete coverinduced by non-uniform corrosion of re-bar[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2011,43(02):747.[doi:DOI :10.15986/j .1006-7930.2011.05.019]
[6]牛荻涛,陆炫毅,苗元耀,等.盐雾环境下疲劳损伤混凝土氯离子扩散性能[J].西安建筑科技大学学报(自然科学版),2015,47(05):617.[doi:DOI:10.15986/j.1006-7930.2015.05.001]
 NIU Ditao,LU Xuanyi,MIAO Yuanyao,et al.Diffusion of chloride ions into fatigue-damaged concrete in salt spray environment[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2015,47(02):617.[doi:DOI:10.15986/j.1006-7930.2015.05.001]
[7]朱方之1,马志鸣2,蒋连接1,等.持载和冻融循环对钢筋混凝土粘结性能的影响[J].西安建筑科技大学学报(自然科学版),2016,48(05):643.[doi:10.15986/j.1006-7930.2016.05.005]
 ZHU Fangzhi,MA Zhiming,JIANG Lianjie,et al.Study of influence of sustained load and freeze-thaw cycling on the bond behavior of steel reinforced concrete[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2016,48(02):643.[doi:10.15986/j.1006-7930.2016.05.005]
[8]胡晓鹏,孙广帅,张成中,等.混凝土早期碳化性能的试验研究[J].西安建筑科技大学学报(自然科学版),2017,49(04):492.[doi:10.15986/j.1006-7930.2017.04.005]
 HU Xiaopeng,SUN Guangshuai,ZHANG Chengzhong,et al.Experimental study on early carbonation of concrete[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2017,49(02):492.[doi:10.15986/j.1006-7930.2017.04.005]
[9]李晓琴,陈前均,陈保淇,等.混凝土SHPB试验端面摩擦效应研究[J].西安建筑科技大学学报(自然科学版),2018,50(02):209.[doi:10.15986/j.1006-7930.2018.05.009]
 LI Xiaoqin CHEN Qianjun CHEN Baoqi TAO Yi.Study on concrete SHPB tests with interface friction effects[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2018,50(02):209.[doi:10.15986/j.1006-7930.2018.05.009]
[10]苗元耀,牛荻涛,程雪莉.钢筋混凝土桥梁疲劳荷载模型及应力水平研究[J].西安建筑科技大学学报(自然科学版),2018,50(04):500.[doi:10.15986/j.1006-7930.2018.04.006]
 MIAO Yuanyao,NIU Ditao,CHENG Xueli.Study on fatigue load model and stress level of the reinforeed concrete bridge[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2018,50(02):500.[doi:10.15986/j.1006-7930.2018.04.006]

备注/Memo

备注/Memo:
收稿日期:2020-09-06 修改稿日期:2021-03-17
基金项目:国家国际科技合作专项项目(ISTCP 2014DFR81000)
第一作者:陈 歆(1991-),男,博士生,主要从事特殊环境作用下混凝土材料与结构性能研究.E-mail:xin.chen@alu.hit.edu.cn
通信作者:葛 勇(1962-),男,博士,教授,博士生导师,主要从事土木工程材料研究.E-mail:hitbm@163.com
更新日期/Last Update: 2021-04-28