[1]刘华,胡鹏飞,王梦南,等.冻融循环对酸污染黄土抗拉特性劣化试验研究[J].西安建筑科技大学学报(自然科学版),2021,53(04):493-501.[doi:10.15986/j.1006-7930.2021.04.005]
 LIU Hua,HU Pengfei,WANG Mengnan,et al.Experimental study on degradation of tensile properties of acid-contaminated loess by freeze-thaw cycles[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(04):493-501.[doi:10.15986/j.1006-7930.2021.04.005]
点击复制

冻融循环对酸污染黄土抗拉特性劣化试验研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
53
期数:
2021年04期
页码:
493-501
栏目:
出版日期:
2021-08-28

文章信息/Info

Title:
Experimental study on degradation of tensile properties of acid-contaminated loess by freeze-thaw cycles
文章编号:
1006-7930(2021)04-0493-09
作者:
刘华12胡鹏飞1王梦南1刘乃飞12胡文乐1
(1.西安建筑科技大学 土木工程学院,陕西 西安 710055; 2.陕西省岩土与地下空间工程重点实验室,陕西 西安 710055)
Author(s):
LIU Hua12HU Pengfei1WANG Mengnan1LIU Naifei12HU Wenle1
(1.School of Civil Engineering,Xi’an Univ. of Arch. & Tech.,Xi’an 710055,China; 2.Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering,Xi’an 710055,China)
关键词:
原状黄土 冻融循环 酸污染 抗拉强度 劣化机制
Keywords:
undisturbed loess freeze-thaw cycle acid pollution tensile strength deterioration mechanism
分类号:
TU444
DOI:
10.15986/j.1006-7930.2021.04.005
文献标志码:
A
摘要:
考虑到黄土地区经受着季节性冻融循环作用的影响,并随着工业化进程的不断推进,黄土被大量生活污水及工业废水侵入,进而导致土体的内部组构及基本物理力学指标发生改变,诱发土体抗拉特征产生劣化趋势,影响着天然边坡及场地的稳定状态.基于此,本文以铜川地区Q3黄土为研究对象,通过调研取样并人工配置盐酸、硫酸和硝酸的4种不同摩尔浓度的污染液,进行室内冻融循环条件下的酸污染黄土抗拉强度试验研究,探讨了酸污染原状黄土在冻融循环下的抗拉强度演变规律,进一步分析了抗拉特征的耦合劣化结果.结果表明:酸污染原状黄土抗拉强度随着冻融循环次数的增加均呈减小态势,3~5次冻融循环之后黄土抗拉强度趋于基本稳定; 且相同浓度下不同酸污染土的抗拉强度随着冻融循环次数的增加呈现出不同的特征.基于试验数据建立酸侵蚀与冻融循环耦合抗拉强度劣化模型,可为孔隙水污染下的冻融黄土地区的边坡稳定性提供数据支撑及为地质灾害防治设计提供参考.
Abstract:
Considering that the loess area is subject to seasonal freeze-thaw cycles,and with the continuous advancement of industrialization,the loess is invaded by a large amount of domestic sewage and industrial wastewater,which leads to changes in the internal structure and basic physical and mechanical indicators of the soil and the deterioration of the tensile characteristics of the soil,and affects the stability of the natural slope and the site,this study takes Q3 loess in Tongchuan area as the research object,and conducts indoor acid-contaminated loess tensile strength test under the condition of indoor freeze-thaw cycles through investigation,ampling and manual configuration of 4 different molar concentrations of hydrochloric acid,sulfuric acid and nitric acid. Based on the test,the evolution of tensile strength of acid-contaminated undisturbed loess under freeze-thaw cycles is discussed,and the coupling degradation results of tensile characteristics are further analyzed. The results show that the tensile strength of the undisturbed acid-contaminated loess decreases with the increase in the number of freeze-thaw cycles,and the tensile strength of the loess tends to be basically stable after 3 to 5 freeze-thaw cycles. The results also show that the tensile strength of different acid-contaminated soil shows different characteristics with the increase of freeze-thaw cycles under the same concentration. The establishment of a tensile strength degradation model coupled with acid erosion and freeze-thaw cycles based on experimental data can provide data support for slope stability in freeze-thaw loess areas contaminated by pore water and provide reference for geological disaster prevention and control.

参考文献/References:

[1]YAN C G,ZHANG Z Q,JING Y L. Characteristics of strength and pore distribution of lime-fly ash loess under freeze-thaw cycles and dry-wet cycles[J].Arabian Journal of Geosciences,2017,10(24):544.
[2]沈珠江. 抗风化设计:未来岩土工程设计的一个重要内容[J]. 岩土工程学报,2004,26(6):866-869.
SHEN Zhujiang. Anti-weathering design:an important content of future geotechnical engineering design[J].Chinese Journal of Geotechnical Engineering,2004,26(6):866-869.
[3]BRUNO,RANDOLPH M F. Dynamic and static load testing of model piles driven into dense sand[J]. Journal of Geotechnical and Geo-Environmental Engineering,1999,125(11):988-998.
[4]叶万军,李长清,杨更社,等. 冻融环境下黄土体结构损伤的尺度效应[J]. 岩土力学,2018,39(7):2336-2343,2360.
YE Wanjun,LI Changqing,YANG Gengshe,et al. Scale effect of loess body structure damage under freezing and thawing environment[J]. Rock and Soil Mechanics,2018,39(7):2336-2343,2360.
[5]叶万军,杨更社,彭建兵,等. 冻融循环导致洛川黄土边坡剥落病害产生机制的试验研究[J]. 岩石力学与工程学报,2012,31(1):199-205.
YE Wanjun,YANG Gengshe,PENG Jianbing,et al. Experimental study on the mechanism of flaking disease of Luochuan loess slope caused by freeze-thaw cycles[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(1):199-205.
[6]李宝平,平高权,张玉,等. 平面应变条件下冻融循环对黄土力学性质的影响[J]. 土木与环境工程学报(中英文),2020,42(2):1-8.
LI Baoping,PING Gaoquan,ZHANG Yu,et al. The influence of freeze-thaw cycles on the mechanical properties of loess under plane strain conditions[J]. Chinese Journal of Civil and Environmental Engineering(Chinese-English),2020,42(2):1-8.
[7]ZHOU G,HU K,ZHAO X,et al. Laboratory investigation on tensile strength characteristics of warm frozen soils[J]. Cold Regions Science and Technology,2015,113:81-90.
[8]赵茜,苏立君,刘华,等.冻融循环对黄土渗透系数各向异性影响的试验研究[J].冰川冻土,2020,42(3):843-853.
ZHAO Qian,SU Lijun,LIU Hua,et al. Experimental study on the influence of freeze-thaw cycles on the anisotropy of permeability coefficient of loess[J]. Journal of Glaciology and Geocryology,2020,42(3):843-853.
[9]陈涛,毕贵权,陈国良,等.冻融循环对黏质粗粒土单轴抗压性能影响的试验研究[J].冰川冻土,2019,41(3):587-594.
CHEN Tao,BI Guiquan,CHEN Guoliang,et al. Experimental study on the effects of freeze-thaw cycles on the uniaxial compressive properties of clayey coarse-grained soils[J]. Glacier and Frozen Soil,2019,41(3):587-594.
[10]许健,李诚钰,王掌权,等. 原状黄土冻融过程抗剪强度劣化机理试验分析[J].土木建筑与环境工程,2016,38(5):90-98.
XU Jian,LI Chengyu,WANG Zhangquan,et al. Experimental analysis of shear strength degradation mechanism of undisturbed loess during freezing and thawing process[J]. Civil Construction and Environmental Engineering,2016,38(5):90-98.
[11]许健,张明辉,李彦锋,等.Na2SO4盐渍原状黄土冻融过程劣化特性试验研究[J].岩土工程学报,2020,42(9):1642-1650.
XU Jian,ZHANG Minghui,LI Yanfeng,et al. Experimental study on degradation characteristics of Na2SO4 saline undisturbed loess during freezing and thawing process[J]. Chinese Journal of Geotechnical Engineering,2020,42(9):1642-1650.
[12]郑郧,马巍,邴慧. 冻融循环对土结构性影响的机理与定量研究方法[J]. 冰川冻土,2015,37(1):132-137.
ZHENG Yun,MA Wei,BING Hui,The mechanism and quantitative research method of the influence of freeze-thaw cycles on soil structure[J]. Journal of Glaciology and Geocryology,2015,37(1):132-137.
[13]郑郧,马巍,邴慧. 冻融循环对土结构性影响的试验研究及影响机制分析[J]. 岩土力学,2015,36(5):1282-1287,1294.
ZHENG Yun,MA Wei,BING Hui,Experimental study of the influence of freeze-thaw cycles on soil structure and analysis of its influence mechanism[J]. Rock and Soil Mechanics,2015,36(5):1282-1287,1294.
[14]王绪民,陈善雄,程昌炳.酸性溶液浸泡下原状黄土物理力学特性试验研究[J].岩土工程学报,2013,35(9):1619-1626.
WANG Xumin,CHEN Shanxiong,CHENG Changbing. Experimental study on physical and mechanical properties of undisturbed loess immersed in acid solution[J]. Chinese Journal of Geotechnical Engineering,2013,35(9):1619-1626.
[15]杨秀娟,武雷杰,刘惹梅,等.酸性溶液对重塑黄土工程性质的影响研究[J].人民黄河,2020,42(7):122-125,135.
YANG Xiujuan,WU Leijie,LIU Rumei,et al. The influence of acidic solution on the engineering properties of remodeling loess[J]. People’s Yellow River,2020,42(7):122-125,135.
[16]刘华,何江涛,赵茜,等. 酸污染原状黄土渗透微观特征演变规律试验研究[J].岩土力学,2020,41(3):765-772.
LIU Hua,HE Jiangtao,ZHAO Qian,et al. Experimental study on the evolution law of infiltration microscopic characteristics of acid-polluted undisturbed loess[J]. Rock and Soil Mechanics,2020,41(3):765-772.
[17]朱春鹏,刘汉龙,沈扬. 酸碱污染土强度特性的室内试验研究[J]. 岩土工程学报,2011,33(7):1146-1152.
ZHU Chunpeng,LIU Hanlong,SHEN Yang. Laboratory test study on the strength characteristics of acid-base contaminated soil[J]. Chinese Journal of Geotechnical Engineering,2011,33(7):1146-1152.
[18]周凤玺,高国耀.非饱和土中热-湿-盐耦合作用的稳态分析[J].岩土力学,2019,40(6):2050-2058.
ZHOU Fengxi,GAO Guoyao. Steady-state analysis of heat-moisture-salt coupling in unsaturated soils[J]. Rock and Soil Mechanics,2019,40(6):2050-2058.
[19]水利部水利水电规划设计总院,南京水利科学研究院. 土工试验方法标准:GB/T 50123-2019[S]. 北京:中国计划版社,2019.
General Institute of Water Resources and Hydropower Planning and Design,Ministry of Water Resources,Nanjing Institute of Water Conservancy Research. Geotechnical test method standard:GB/T 50123-2019[S]. Beijing:China Planning Press,2019.
[20]施家佩.造纸工业废水[M].北京:化学工业出版社,1988.
SHI Jiapei. Wastewater from paper industry[M]. Beijing:Chemical Industry Press,1988
[21]PLE O,LE T N H. Effect of polypropylene fiber-reinforcement on the mechanical behavior of silty clay[J]. Geotextiles and Geomembranes,2012,32(32):111-116.
[22]VISWANADHAM B V S,JHA B K,PAWAR S N. Influence of geofibers on the flexural behavior of compacted soil beams[J]. Geosynthetics International,2010,17(2):86-99.
[23]袁志辉,倪万魁,唐春,等. 干湿循环效应下黄土抗拉强度试验研究[J]. 岩石力学与工程学报,2017,36(S1):3670-3677.
YUAN Zhihui,NI Wankui,TANG Chun,et al. Experimental study on the tensile strength of loess under the effects of dry-wet cycles[J],Chinese Journal of Rock Mechanics and Engineering,2017,36(S1):3670-3677.
[24]刘东生,张宗祜. 中国的黄土[J]. 地质学报,1962,42(1):1-14,16-19.
LIU Dongsheng,ZHANG Zonghu. Chinese loess[J]. Acta Geology,1962,42(1):1-14,16-19.
[25]BECKETT P H T. The physical chemistry and mineralogy of soils. vol. 1. soil materials:C. E. Marshall:John Wiley,New York,1964. 90s[J]. Pergamon,1965,29(5):605-606.
[26]LI Yanrong. A review of shear and tensile strengths of the Malan Loess in China[J]. Engineering Geology,2018,236:4-10.
[27]肖东辉,冯文杰,张泽. 冻融循环作用下黄土孔隙率变化规律[J]. 冰川冻土,2014,36(4):907-912.
XIAO Donghui,FENG Wenjie,ZHANG Ze. Change law of porosity of loess under freeze-thaw cycles[J]. Glaciology and Geocryology,2014,36(4):907-912.
[28]赵鲁庆,杨更社,吴迪,等. 冻融黄土微观结构变化规律及分形特性研究[J]. 地下空间与工程学报,2019,15(6):1680-1690.
ZHAO Luqing,YANG Gengshe,WU Di,et al.,Study on the microstructure change and fractal characteristics of freeze-thaw loess[J]. Chinese Journal of Underground Space and Engineering,2019,15(6):1680-1690.
[29]时伟,张亮,杨忠年,等. 冻融循环条件下膨胀土力学特性试验研究[J]. 西安建筑科技大学学报(自然科学版),2019,51(4):480-485.
SHI Wei,ZHANG Liang,SHI Zhongnian,et al. Experimental study on mechanical properties of expansive soil of artificial preparation under freeze-thaw cycle conditions[J]. J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(4):480-485.
(编辑 桂智刚)

相似文献/References:

[1]张振龙,徐亚利,刘增荣.结构性对黄土压缩回弹性能影响的试验研究[J].西安建筑科技大学学报(自然科学版),2016,48(04):500.[doi:10.15986/j.1006-7930.2016.04. 007]
 ZHANG zhenlong,XU yali,LIU zengrong.Experimental research on the influence of the soil structure on the resilience of loess[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2016,48(04):500.[doi:10.15986/j.1006-7930.2016.04. 007]
[2]金 鑫,王铁行,于康康,等.水玻璃自渗注浆加固原状黄土效果及评价[J].西安建筑科技大学学报(自然科学版),2016,48(04):516.[doi:10.15986/j.1006-7930.2016.04. 010]
 JIN Xin,WANG Tiehang,YU Kangkang,et al.Effect assessment of sodium silicate self-permeated grouting in intact loess[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2016,48(04):516.[doi:10.15986/j.1006-7930.2016.04. 010]
[3]陈涛,何伟.冻融循环层理砂岩破坏模式试验研究[J].西安建筑科技大学学报(自然科学版),2020,52(01):79.[doi:10.15986j.1006-7930.2020.01.011]
 CHEN Tao,HE Wei.Research on failure modes of stratified sandstone under freeze-thaw cycling[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(04):79.[doi:10.15986j.1006-7930.2020.01.011]
[4]张莹莹,杨忠年,时 伟,等.冻融循环作用下膨胀土边坡稳定性模型试验研究[J].西安建筑科技大学学报(自然科学版),2020,52(02):257.[doi:10.15986/j.1006-7930.2020.02.015]
 ZHANG Yingying,YANG Zhongnian,SHI Wei,et al.Model test study on the stability of expansive soil slope under freeze-thaw cycle[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(04):257.[doi:10.15986/j.1006-7930.2020.02.015]
[5]李蕾蕾,康 抗,冯泽平,等.冻融与硫酸盐作用下再生混凝土性能劣化研究[J].西安建筑科技大学学报(自然科学版),2023,55(04):571.[doi:10.15986/j.1006-7930.2023.04.012 ]
 LI Leilei,KANG Kang,FENG Zeping,et al.Study on performance deterioration of recycled concrete under coupling effect of freeze-thaw and sulfate[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(04):571.[doi:10.15986/j.1006-7930.2023.04.012 ]

备注/Memo

备注/Memo:
收稿日期:2020-01-14 修改稿日期:2021-07-05
基金项目:国家自然科学基金项目(51608436); 陕西省自然科学基础研究计划(2019JQ756); 陕西省教育厅专项科研项目(19JK0452); 中国博士后科学基金项目(2019M663648)
第一作者:刘华(1983-),男,博士,副教授,主要从事环境岩土工程方面研究.E-mail:liuhua029@xauat.edu.cn
更新日期/Last Update: 2021-08-28